Biblio
Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.
Todays' era of internet-of-things, cloud computing and big data centers calls for more fresh graduates with expertise in digital data processing techniques such as compression, encryption and error correcting codes. This paper describes a project-based elective that covers these three main digital data processing techniques and can be offered to three different undergraduate majors electrical and computer engineering and computer science. The course has been offered successfully for three years. Registration statistics show equal interest from the three different majors. Assessment data show that students have successfully completed the different course outcomes. Students' feedback show that students appreciate the knowledge they attain from this elective and suggest that the workload for this course in relation to other courses of equal credit is as expected.
to appear
to appear
Advanced Persistent Threat (APT) is a complex (Advanced) cyber-attack (Threat) against specific targets over long periods of time (Persistent) carried out by nation states or terrorist groups with highly sophisticated levels of expertise to establish entries into organizations, which are critical to a country's socio-economic status. The key identifier in such persistent threats is that patterns are long term, could be high priority, and occur consistently over a period of time. This paper focuses on identifying persistent threat patterns in network data, particularly data collected from Intrusion Detection Systems. We utilize Association Rule Mining (ARM) to detect persistent threat patterns on network data. We identify potential persistent threat patterns, which are frequent but at the same time unusual as compared with the other frequent patterns.
Online privacy policies notify users of a Website how their personal information is collected, processed and stored. Against the background of rising privacy concerns, privacy policies seem to represent an influential instrument for increasing customer trust and loyalty. However, in practice, consumers seem to actually read privacy policies only in rare cases, possibly reflecting the common assumption stating that policies are hard to comprehend. By designing and implementing an automated extraction and readability analysis toolset that embodies a diversity of established readability measures, we present the first large-scale study that provides current empirical evidence on the readability of nearly 50,000 privacy policies of popular English-speaking Websites. The results empirically confirm that on average, current privacy policies are still hard to read. Furthermore, this study presents new theoretical insights for readability research, in particular, to what extent practical readability measures are correlated. Specifically, it shows the redundancy of several well-established readability metrics such as SMOG, RIX, LIX, GFI, FKG, ARI, and FRES, thus easing future choice making processes and comparisons between readability studies, as well as calling for research towards a readability measures framework. Moreover, a more sophisticated privacy policy extractor and analyzer as well as a solid policy text corpus for further research are provided.
In order to integrate equipment from different vendors, wireless sensor networks need to become more standardized. Using IP as the basis of low power radio networks, together with application layer standards designed for this purpose is one way forward. This research focuses on implementing and deploying a system using Contiki, 6LoWPAN over an 868 MHz radio network, together with CoAP as a standard application layer protocol. A system was deployed in the Cairngorm mountains in Scotland as an environmental sensor network, measuring streams, temperature profiles in peat and periglacial features. It was found that RPL provided an effective routing algorithm, and that the use of UDP packets with CoAP proved to be an energy efficient application layer. This combination of technologies can be very effective in large area sensor networks.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.