Biblio
Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.
Security in mobile handsets of telecommunication standards such as GSM, Project 25 and TETRA is very important, especially when governments and military forces use handsets and telecommunication devices. Although telecommunication could be quite secure by using encryption, coding, tunneling and exclusive channel, attackers create new ways to bypass them without the knowledge of the legitimate user. In this paper we introduce a new, simple and economical circuit to warn the user in cases where the message is not encrypted because of manipulation by attackers or accidental damage. This circuit not only consumes very low power but also is created to sustain telecommunication devices in aspect of security and using friendly. Warning to user causes the best practices of telecommunication devices without wasting time and energy for fault detection.
Compressive sensing (CS) is a novel technology for sparse signal acquisition with sub-Nyquist sampling rate but with relative high resolution. Photonics-assisted CS has attracted much attention recently due the benefit of wide bandwidth provided by photonics. This paper discusses the approaches to realizing photonics-assisted CS.
The transmission of data over a common transmission media revolute the world of information sharing from personal desktop to cloud computing. But the risk of the information theft has increased in the same ratio by the third party working on the same channel. The risk can be avoided using the suitable encryption algorithm. Using the best suited algorithm the transmitted data will be encrypted before placing it on the common channel. Using the public key or the private key the encrypted data can be decrypted by the authenticated user. It will avoid the risk of information theft by the unauthenticated user. In this work we have proposed an encryption algorithm which uses the ASCII code to encrypt the plain text. The common key will be used by sender or receiver to encrypt and decrypt the text for secure communication.
This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.
In data analysis, it is always a tough task to strike the balance between the privacy and the applicability of the data. Due to the demand for individual privacy, the data are being more or less obscured before being released or outsourced to avoid possible privacy leakage. This process is so called de-identification. To discuss a de-identification policy, the most important two aspects should be the re-identification risk and the information loss. In this paper, we introduce a novel policy searching method to efficiently find out proper de-identification policies according to acceptable re-identification risk while retaining the information resided in the data. With the UCI Machine Learning Repository as our real world dataset, the re-identification risk can therefore be able to reflect the true risk of the de-identified data under the de-identification policies. Moreover, using the proposed algorithm, one can then efficiently acquire policies with higher information entropy.