N, Joshi Padma, Ravishankar, N., Raju, M.B., Vyuha, N. Ch. Sai.
2021.
Secure Software Immune Receptors from SQL Injection and Cross Site Scripting Attacks in Content Delivery Network Web Applications. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
In our proposed work the web security has been enhanced using additional security code and an enhanced frame work. Administrator of site is required to specify the security code for particular date and time. On user end user would be capable to login and view authentic code allotted to them during particular time slot. This work would be better in comparison of tradition researches in order to prevent sql injection attack and cross script because proposed work is not just considering the security, it is also focusing on the performance of security system. This system is considering the lot of security dimensions. But in previous system there was focus either on sql injection or cross script. Proposed research is providing versatile security and is available with low time consumption with less probability of unauthentic access.
N, Praveena., Vivekanandan, K..
2021.
A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
N, Sivaselvan, Bhat K, Vivekananda, Rajarajan, Muttukrishnan.
2020.
Blockchain-Based Scheme for Authentication and Capability-Based Access Control in IoT Environment. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0323–0330.
Authentication and access control techniques are fundamental security elements to restrict access to critical resources in IoT environment. In the current state-of-the-art approaches in the literature, the architectures do not address the security features of authentication and access control together. Besides, they don't completely fulfill the key Internet-of-Things (IoT) features such as usability, scalability, interoperability and security. In this paper, we introduce a novel blockchain-based architecture for authentication and capability-based access control for IoT environment. A capability is a token which contains the access rights authorized to the device holding it. The architecture uses blockchain technology to carry out all the operations in the scheme. It does not embed blockchain technology into the resource-constrained IoT devices for the purpose of authentication and access control of the devices. However, the IoT devices and blockchain are connected by means of interfaces through which the essential communications are established. The authenticity of such interfaces are verified before any communication is made. Consequently, the architecture satisfies usability, scalability, interoperability and security features. We carried out security evaluation for the scheme. It exhibits strong resistance to threats like spoofing, tampering, repudiation, information disclosure, and Denial-of-Service (DoS). We also developed a proof of concept implementation where cost and storage overhead of blockchain transactions are studied.
N. D. Truong, J. Y. Haw, S. M. Assad, P. K. Lam, O. Kavehei.
2019.
Machine Learning Cryptanalysis of a Quantum Random Number Generator. IEEE Transactions on Information Forensics and Security. 14:403-414.
Random number generators (RNGs) that are crucial for cryptographic applications have been the subject of adversarial attacks. These attacks exploit environmental information to predict generated random numbers that are supposed to be truly random and unpredictable. Though quantum random number generators (QRNGs) are based on the intrinsic indeterministic nature of quantum properties, the presence of classical noise in the measurement process compromises the integrity of a QRNG. In this paper, we develop a predictive machine learning (ML) analysis to investigate the impact of deterministic classical noise in different stages of an optical continuous variable QRNG. Our ML model successfully detects inherent correlations when the deterministic noise sources are prominent. After appropriate filtering and randomness extraction processes are introduced, our QRNG system, in turn, demonstrates its robustness against ML. We further demonstrate the robustness of our ML approach by applying it to uniformly distributed random numbers from the QRNG and a congruential RNG. Hence, our result shows that ML has potentials in benchmarking the quality of RNG devices.
N. Nakagawa, Y. Teshigawara, R. Sasaki.
2015.
"Development of a Detection and Responding System for Malware Communications by Using OpenFlow and Its Evaluation". 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). :46-51.
Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.
N. Soule, B. Simidchieva, F. Yaman, R. Watro, J. Loyall, M. Atighetchi, M. Carvalho, D. Last, D. Myers, B. Flatley.
2015.
Quantifying & minimizing attack surfaces containing moving target defenses. 2015 Resilience Week (RWS). :1-6.
The cyber security exposure of resilient systems is frequently described as an attack surface. A larger surface area indicates increased exposure to threats and a higher risk of compromise. Ad-hoc addition of dynamic proactive defenses to distributed systems may inadvertently increase the attack surface. This can lead to cyber friendly fire, a condition in which adding superfluous or incorrectly configured cyber defenses unintentionally reduces security and harms mission effectiveness. Examples of cyber friendly fire include defenses which themselves expose vulnerabilities (e.g., through an unsecured admin tool), unknown interaction effects between existing and new defenses causing brittleness or unavailability, and new defenses which may provide security benefits, but cause a significant performance impact leading to mission failure through timeliness violations. This paper describes a prototype service capability for creating semantic models of attack surfaces and using those models to (1) automatically quantify and compare cost and security metrics across multiple surfaces, covering both system and defense aspects, and (2) automatically identify opportunities for minimizing attack surfaces, e.g., by removing interactions that are not required for successful mission execution.
Na, L., Yunwei, D., Tianwei, C., Chao, W., Yang, G..
2015.
The Legitimacy Detection for Multilevel Hybrid Cloud Algorithm Based Data Access. Reliability and Security - Companion 2015 IEEE International Conference on Software Quality. :169–172.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
Na, Yoonjong, Joo, Yejin, Lee, Heejo, Zhao, Xiangchen, Sajan, Kurian Karyakulam, Ramachandran, Gowri, Krishnamachari, Bhaskar.
2020.
Enhancing the Reliability of IoT Data Marketplaces through Security Validation of IoT Devices. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :265—272.
IoT data marketplaces are being developed to help cities and communities create large scale IoT applications. Such data marketplaces let the IoT device owners sell their data to the application developers. Following this application development model, the application developers need not deploy their own IoT devices when developing IoT applications; instead, they can buy data from a data marketplace. In a marketplace-based IoT application, the application developers are making critical business and operation decisions using the data produced by seller's IoT devices. Under these circumstances, it is crucial to verify and validate the security of IoT devices.In this paper, we assess the security of IoT data marketplaces. In particular, we discuss what kind of vulnerabilities exist in IoT data marketplaces using the well-known STRIDE model, and present a security assessment and certification framework for IoT data marketplaces to help the device owners to examine the security vulnerabilities of their devices. Most importantly, our solution certifies the IoT devices when they connect to the data marketplace, which helps the application developers to make an informed decision when buying and consuming data from a data marketplace. To demonstrate the effectiveness of the proposed approach, we have developed a proof-of-concept using I3 (Intelligent IoT Integrator), which is an open-source IoT data marketplace developed at the University of Southern California, and IoTcube, which is a vulnerability detection toolkit developed by researchers at Korea University. Through this work, we show that it is possible to increase the reliability of a IoT data marketplace while not damaging the convenience of the users.
Nabipourshiri, Rouzbeh, Abu-Salih, Bilal, Wongthongtham, Pornpit.
2018.
Tree-Based Classification to Users' Trustworthiness in OSNs. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering. :190-194.
In the light of the information revolution, and the propagation of big social data, the dissemination of misleading information is certainly difficult to control. This is due to the rapid and intensive flow of information through unconfirmed sources under the propaganda and tendentious rumors. This causes confusion, loss of trust between individuals and groups and even between governments and their citizens. This necessitates a consolidation of efforts to stop penetrating of false information through developing theoretical and practical methodologies aim to measure the credibility of users of these virtual platforms. This paper presents an approach to domain-based prediction to user's trustworthiness of Online Social Networks (OSNs). Through incorporating three machine learning algorithms, the experimental results verify the applicability of the proposed approach to classify and predict domain-based trustworthy users of OSNs.
Nace, L..
2020.
Securing Trajectory based Operations Through a Zero Trust Framework in the NAS. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). :1B1–1–1B1—8.
Current FAA strategic objectives include a migration to Trajectory Based Operations (TBO) with the integration of time-based management data and tools to increase efficiencies and reduce operating costs within the National Airspace System (NAS). Under TBO, integration across various FAA systems will take on greater importance than ever. To ensure the security of this integration without impacting data and tool availability, the FAA should consider adopting a Zero Trust Framework (ZTF) into the NAS.ZTF was founded on the belief that strong boundary security protections alone (traditionally referred to as the castle-moat approach) were no longer adequate to protecting critical data from outside threats and, with ever-evolving threat sophistication, contamination within a network perimeter is assumed to already exist (see Figure 1).To address this, theorists developed a framework where trust is controlled and applied to all internal network devices, users, and applications in what was termed a "Never Trust; Always Verify" approach to distinguish the authorized from the unauthorized elements wanting to access network data.To secure achievement of TBO objectives and add defensive depth to counter potential insider threats, the FAA must consider implementing a hybrid approach to the ZTF theory. This would include continued use of existing boundary protections provided by the FAA Telecommunications Infrastructure (FTI) network, with the additional strength afforded by the application of ZTF, in what is called the NAS Zero Trust eXtended (ZTX) platform.This paper discusses a proposal to implement a hybrid ZTX approach to securing TBO infrastructure and applications in the NAS.
Nachtigall, Troy Robert, Andersen, Kristina.
2018.
Making Secret Pockets. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :LBW574:1–LBW574:6.
This paper describes an early design research exploration into the potential of folds and pockets to serve as places for safekeeping and secrecy in wearables. We explore what such secrecy may mean through woven data codes. We report on early material exploration, a pilot study with ten participants, and the personalization of a data object. We then outline, how we will make use of these early indications to build future stages of the project.
Nadeem, Humaira, Rabbani, Imran Mujaddid, Aslam, Muhammad, M, Martinez Enriquez A..
2018.
KNN-Fuzzy Classification for Cloud Service Selection. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :66:1-66:8.
Cloud computing is an emerging technology that provides services to its users via Internet. It also allows sharing of resources there by reducing cost, money and space. With the popularity of cloud and its advantages, the trend of information industry shifting towards cloud services is increasing tremendously. Different cloud service providers are there on internet to provide services to the users. These services provided have certain parameters to provide better usage. It is difficult for the users to select a cloud service that is best suited to their requirements. Our proposed approach is based on data mining classification technique with fuzzy logic. Proposed algorithm uses cloud service design factors (security, agility and assurance etc.) and international standards to suggest the cloud service. The main objective of this research is to enable the end cloud users to choose best service as per their requirements and meeting international standards. We test our system with major cloud provider Google, Microsoft and Amazon.
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.
2020.
LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
Nadgowda, S., Duri, S., Isci, C., Mann, V..
2017.
Columbus: Filesystem Tree Introspection for Software Discovery. 2017 IEEE International Conference on Cloud Engineering (IC2E). :67–74.
Software discovery is a key management function to ensure that systems are free of vulnerabilities, comply with licensing requirements, and support advanced search for systems containing given software. Today, software is predominantly discovered through querying package management tools, or using rules that check for file metadata or contents. These approaches are inadequate as not every software is installed through package managers, and agile development practices lead to frequent deployment of software. Other approaches to software discovery use machine learning methods requiring training phase, or require maintaining knowledge bases. Columbus uses the knowledge of the software packaging practices that evolved over time, and uses the information embedded in the file system impression created by a software package to discover it. Columbus is able to discover software in 92% of all official Docker images. Further, Columbus can be used in problem diagnosis and drift detection situations to compare two different systems, or to determine the evolution of a system overtime.
Nadi, Sarah, Krüger, Stefan, Mezini, Mira, Bodden, Eric.
2016.
Jumping Through Hoops: Why Do Java Developers Struggle with Cryptography APIs? Proceedings of the 38th International Conference on Software Engineering. :935–946.
To protect sensitive data processed by current applications, developers, whether security experts or not, have to rely on cryptography. While cryptography algorithms have become increasingly advanced, many data breaches occur because developers do not correctly use the corresponding APIs. To guide future research into practical solutions to this problem, we perform an empirical investigation into the obstacles developers face while using the Java cryptography APIs, the tasks they use the APIs for, and the kind of (tool) support they desire. We triangulate data from four separate studies that include the analysis of 100 StackOverflow posts, 100 GitHub repositories, and survey input from 48 developers. We find that while developers find it difficult to use certain cryptographic algorithms correctly, they feel surprisingly confident in selecting the right cryptography concepts (e.g., encryption vs. signatures). We also find that the APIs are generally perceived to be too low-level and that developers prefer more task-based solutions.
Nadi, Sarah, Krüger, Stefan.
2016.
Variability Modeling of Cryptographic Components: Clafer Experience Report. Proceedings of the Tenth International Workshop on Variability Modelling of Software-intensive Systems. :105–112.
Software systems need to use cryptography to protect any sensitive data they collect. However, there are various classes of cryptographic components (e.g., ciphers, digests, etc.), each suitable for a specific purpose. Additionally, each class of such components comes with various algorithms and configurations. Finding the right combination of algorithms and correct settings to use is often difficult. We believe that using variability modeling to model these algorithms, their relationships, and restrictions can help non-experts navigate this complex domain. In this paper, we report on our experience modeling cryptographic components in Clafer, a modeling language that combines feature modeling and meta-modeling. We discuss design decisions we took as well as the challenges we ran into. Our work helps expand variability modeling into new domains and sheds lights on modeling requirements that appear in practice.
Nadir, Ibrahim, Ahmad, Zafeer, Mahmood, Haroon, Asadullah Shah, Ghalib, Shahzad, Farrukh, Umair, Muhammad, Khan, Hassam, Gulzar, Usman.
2019.
An Auditing Framework for Vulnerability Analysis of IoT System. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :39–47.
Introduction of IoT is a big step towards the convergence of physical and virtual world as everyday objects are connected to the internet nowadays. But due to its diversity and resource constraint nature, the security of these devices in the real world has become a major challenge. Although a number of security frameworks have been suggested to ensure the security of IoT devices, frameworks for auditing this security are rare. We propose an open-source framework to audit the security of IoT devices covering hardware, firmware and communication vulnerabilities. Using existing open-source tools, we formulate a modular approach towards the implementation of the proposed framework. Standout features in the suggested framework are its modular design, extensibility, scalability, tools integration and primarily autonomous nature. The principal focus of the framework is to automate the process of auditing. The paper further mentions some tools that can be incorporated in different modules of the framework. Finally, we validate the feasibility of our framework by auditing an IoT device using proposed toolchain.
Naeem Esfahani, Eric Yuan, Kyle Canavera, Sam Malek.
2016.
Inferring Software Component Interaction Dependencies for Adaptation Support. ACM Transactions on Autonomous and Adaptive Systems (TAAS). 10(4)
A self-managing software system should be able to monitor and analyze its runtime behavior and make adaptation decisions accordingly to meet certain desirable objectives. Traditional software adaptation techniques and recent “models@runtime” approaches usually require an a priori model for a system’s dynamic behavior. Oftentimes the model is difficult to define and labor-intensive to maintain, and tends to get out of date due to adaptation and architecture decay. We propose an alternative approach that does not require defining the system’s behavior model beforehand, but instead involves mining software component interactions from system execution traces to build a probabilistic usage model, which is in turn used to analyze, plan, and execute adaptations. In this article, we demonstrate how such an approach can be realized and effectively used to address a variety of adaptation concerns. In particular, we describe the details of one application of this approach for safely applying dynamic changes to a running software system without creating inconsistencies. We also provide an overview of two other applications of the approach, identifying potentially malicious (abnormal) behavior for self-protection, and improving deployment of software components in a distributed setting for performance self-optimization. Finally, we report on our experiments with engineering self-management features in an emergency deployment system using the proposed mining approach.