Biblio
Filters: First Letter Of Last Name is S [Clear All Filters]
Decoy VNF for Enhanced Security in Fog Computing. 2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). :75—81.
.
2021. Fog computing extends cloud resources to the edge of the network, thus enabling network providers to support real-time applications at low latencies. These applications further demand high security against malicious attacks that target distributed fog servers. One effective defense mechanism here against cyber attacks is the use of honeypots. The latter acts as a potential target for attackers by diverting malicious traffic away from the servers that are dedicated to legitimate users. However, one main limitation of honeypots is the lack of real traffic and network activities. Therefore, it is important to implement a solution that simulates the behavior of the real system to lure attackers without the risk of being exposed. Hence this paper proposes a practical approach to generate network traffic by introducing decoy virtual network functions (VNF) embedded on fog servers, which make the network traffic on honeypots resemble a legitimate, vulnerable fog system to attract cyber attackers. The use of virtualization allows for robust scalability and modification of network functions based on incoming attacks, without the need for dedicated hardware. Moreover, deep learning is leveraged here to build fingerprints for each real VNF, which is subsequently used to support its decoy counterpart against active probes. The proposed framework is evaluated based on CPU utilization, memory usage, disk input/output access, and network latency.
Deep Learning Based Event Correlation Analysis in Information Systems. 2021 6th International Conference on Computer Science and Engineering (UBMK). :209–214.
.
2021. Information systems and applications provide indispensable services at every stage of life, enabling us to carry out our activities more effectively and efficiently. Today, information technology systems produce many alarm and event records. These produced records often have a relationship with each other, and when this relationship is captured correctly, many interruptions that will harm institutions can be prevented before they occur. For example, an increase in the disk I/O speed of a server or a problem may cause the business software running on that server to slow down and cause different results in this slowness. Here, an institution’s accurate analysis and management of all event records, and rule-based analysis of the resulting records in certain time periods and depending on certain rules will ensure efficient and effective management of millions of alarms. In addition, it will be possible to prevent possible problems by removing the relationships between events. Events that occur in IT systems are a kind of footprint. It is also vital to keep a record of the events in question, and when necessary, these event records can be analyzed to analyze the efficiency of the systems, harmful interferences, system failure tendency, etc. By understanding the undesirable situations such as taking the necessary precautions, possible losses can be prevented. In this study, the model developed for fault prediction in systems by performing event log analysis in information systems is explained and the experimental results obtained are given.
Deep Learning Enabled Assessment of Magnetic Confinement in Magnetized Liner Inertial Fusion. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
.
2021. Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion (MIF) concept being studied on the Z-machine at Sandia National Laboratories. MagLIF relies on quasi-adiabatic heating of a gaseous deuterium (DD) fuel and flux compression of a background axially oriented magnetic field to achieve fusion relevant plasma conditions. The magnetic flux per fuel radial extent determines the confinement of charged fusion products and is thus of fundamental interest in understanding MagLIF performance. It was recently shown that secondary DT neutron spectra and yields are sensitive to the magnetic field conditions within the fuel, and thus provide a means by which to characterize the magnetic confinement properties of the fuel. 1 , 2 , 3 We utilize an artificial neural network to surrogate the physics model of Refs. [1] , [2] , enabling Bayesian inference of the magnetic confinement parameter for a series of MagLIF experiments that systematically vary the laser preheat energy deposited in the target. This constitutes the first ever systematic experimental study of the magnetic confinement properties as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that the fuel magnetization decreases with deposited preheat energy in a fashion consistent with Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.
Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks. 2021 American Control Conference (ACC). :2861–2867.
.
2021. The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.
DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
.
2021. In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
Degree-sequence Homomorphisms For Homomorphic Encryption Of Information. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:132–136.
.
2021. The cipher-text homomorphism encryption algorithm (homomorphic encryption) are used for the cloud safe and to solve the integrity, availability and controllability of information. For homomorphic encryption, we, by Topsnut-gpw technique, design: degree-sequence homomorphisms and their inverses, degree-sequence homomorphic chain, graph-set homomorphism, colored degree-sequence matrices and every-zero Cds-matrix groups, degree-coinciding degree-sequence lattice, degree-joining degree-sequence lattice, as well as degree-sequence lattice homomorphism, since number-based strings made by Topsnut-gpws of topological coding are irreversible, and Topsnut-gpws can realize: one public-key corresponds two or more privatekeys, and more public-key correspond one or more private-keys for asymmetric encryption algorithm.
Deletion Error Correction based on Polar Codes in Skyrmion Racetrack Memory. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
.
2021. Skyrmion racetrack memory (Sk-RM) is a new storage technology in which skyrmions are used to represent data bits to provide high storage density. During the reading procedure, the skyrmion is driven by a current and sensed by a fixed read head. However, synchronization errors may happen if the skyrmion does not pass the read head on time. In this paper, a polar coding scheme is proposed to correct the synchronization errors in the Sk-RM. Firstly, we build two error correction models for the reading operation of Sk-RM. By connecting polar codes with the marker codes, the number of deletion errors can be determined. We also redesign the decoding algorithm to recover the information bits from the readout sequence, where a tighter bound of the segmented deletion errors is derived and a novel parity check strategy is designed for better decoding performance. Simulation results show that the proposed coding scheme can efficiently improve the decoding performance.
Demonstrating Physical Layer Security Via Weighted Fractional Fourier Transform. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
.
2021. Recently, there has been significant enthusiasms in exploiting physical (PHY-) layer characteristics for secure wireless communication. However, most existing PHY-layer security paradigms are information theoretical methodologies, which are infeasible to real and practical systems. In this paper, we propose a weighted fractional Fourier transform (WFRFT) pre-coding scheme to enhance the security of wireless transmissions against eavesdropping. By leveraging the concept of WFRFT, the proposed scheme can easily change the characteristics of the underlying radio signals to complement and secure upper-layer cryptographic protocols. We demonstrate a running prototype based on the LTE-framework. First, the compatibility between the WFRFT pre-coding scheme and the conversational LTE architecture is presented. Then, the security mechanism of the WFRFT pre-coding scheme is demonstrated. Experimental results validate the practicability and security performance superiority of the proposed scheme.
Design and Application of Converged Infrastructure through Virtualization Technology in Grid Operation Control Center in North Eastern Region of India. 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. :1–5.
.
2021. Modern day grid operation requires multiple interlinked applications and many automated processes at control center for monitoring and operation of grid. Information technology integrated with operational technology plays a critical role in grid operation. Computing resource requirements of these software applications varies widely and includes high processing applications, high Input/Output (I/O) sensitive applications and applications with low resource requirements. Present day grid operation control center uses various applications for load despatch schedule management, various real-time analytics & optimization applications, post despatch analysis and reporting applications etc. These applications are integrated with Operational Technology (OT) like Data acquisition system / Energy management system (SCADA/EMS), Wide Area Measurement System (WAMS) etc. This paper discusses various design considerations and implementation of converged infrastructure through virtualization technology by consolidation of servers and storages using multi-cluster approach to meet high availability requirement of the applications and achieve desired objectives of grid control center of north eastern region in India. The process involves weighing benefits of different architecture solution, grouping of application hosts, making multiple clusters with reliability and security considerations, and designing suitable infrastructure to meet all end objectives. Reliability, enhanced resource utilization, economic factors, storage and physical node selection, integration issues with OT systems and optimization of cost are the prime design considerations. Modalities adopted to minimize downtime of critical systems for grid operation during migration from the existing infrastructure and integration with OT systems of North Eastern Regional Load Despatch Center are also elaborated in this paper.
Design and Development of a Smart Surveillance System for Security of an Institution. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT). :1–4.
.
2021. Conventional Security Systems are improving with the advancement of Internet of Things (IoT) based technology. For better security, in addition to the currently available technology, surveillance systems are used. In this research, a Smart Surveillance System with machine-learning capabilities is designed to detect security breaches and it will resolve safety concerns. Machine learning algorithms are implemented to detect intruders as well as suspicious activities. Enery efficiency is the major concern for constant monitoring systems. As a result, the designed system focuses on power consumption by calibrating the system so that it can work on bare minimum power and additionally provides the required output. Fire sensor has also been integrated to detect fire for safety purposes. By adding upon the security infrastructure, next-generation smart surveillance systems can be created for a safe future. The developed system contains the necessary tools to recognize intruders by face recognition. Also using the ambient sensors (PIR sensor, fire detecting sensor), a secure environment is provided during working and non-working hours. The system shows high accuracy in human & flame detection. A more reliable security system can be created with the further development of this research.
Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
.
2021. In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Design and Implementation of Security Test Pipeline based on DevSecOps. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:532—535.
.
2021. In recent years, a variety of information security incidents emerge in endlessly, with different types. Security vulnerability is an important factor leading to the security risk of information system, and is the most common and urgent security risk in information system. The research goal of this paper is to seamlessly integrate the security testing process and the integration process of software construction, deployment, operation and maintenance. Through the management platform, the security testing results are uniformly managed and displayed in reports, and the project management system is introduced to develop, regress and manage the closed-loop security vulnerabilities. Before the security vulnerabilities cause irreparable damage to the information system, the security vulnerabilities are found and analyzed Full vulnerability, the formation of security vulnerability solutions to minimize the threat of security vulnerabilities to the information system.
Design of a New Micro Linear Actuator Owning Two-phase No-cross Planar Coils. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–11.
.
2021. This paper presents a new micro linear actuator design. The North-South (NS) permanent magnet array configuration is assembled as the mobile part. The fixed part is designed to two-phase planar coils with no crossings avoiding interferences between overlapped conductors. The analytical calculation of the permanent magnet array verifies the feasibility of the finite element simulation. And then electromagnetic optimizations based on simulation to maximize the average thrust and minimize thrust ripple. In order to deal with millimeter level structure design, a microfabrication approach is adopted to process the new micro linear actuator in silicon material. The new micro linear actuator is able to perform millimeter level displacement strokes along a single axis in the horizontal plane. The experimental results demonstrate that the new micro linear actuator is capable of delivering variable strokes up to 5 mm with a precision error of 30 μm in position closed loop control and realizes the maximum velocity of 26.62mm/s with maximum error of 4.92%.
Design of transmission line safety early warning system based on big data variable analysis. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). :90–93.
.
2021. In order to improve the accuracy and efficiency of transmission line safety early warning, a transmission line safety early warning system based on big data variable analysis is proposed. Firstly, the overall architecture of the system is designed under the B / S architecture. Secondly, in the hardware part of the system, the security data real-time monitoring module, data transmission module and security warning module are designed to meet the functional requirements of the system. Finally, in the system software design part, the big data variable analysis method is used to calculate the hidden danger of transmission line safety, so as to improve the effectiveness of transmission safety early warning. The experimental results show that, compared with the traditional security early warning system, the early warning accuracy and efficiency of the designed system are significantly improved, which can ensure the safe operation of the transmission line.
Design of Visible Light Communication System Using Ask Modulation. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :894–899.
.
2021. A Visible Light Communication (VLC) is a fast growing technology became ubiquitous in the Optical wireless communication domain. It has the benefits of high security, high bandwidth, less power consumption, free from Electro Magnetic radiation hazards. VLC can help to address the looming spectrum crunch problem with secure communication in an unlimited spectrum. VLC provides extensive wireless connectivity with larger data densities than Wi-Fi along with added security features that annihilate unwanted external network invasion. The problem such as energy consumption and infrastructure complexity has been reduced by integrating the illumination and data services. The objective is to provide fast data communication with uninterrupted network connectivity and high accuracy to the user. In this paper, a proposed visible light communication system for transmitting text information using amplitude shift keying modulation (ASK) has been presented. Testing of transmitter and receiver block based on frequency, power and distance has been analyzed. The results show that the receiver is capable of receiving input data with minimum length under direct communication with the transmitter.
Detecting Cryptojacking Traffic Based on Network Behavior Features. 2021 IEEE Global Communications Conference (GLOBECOM). :01—06.
.
2021. Bitcoin and other digital cryptocurrencies have de-veloped rapidly in recent years. To reduce hardware and power costs, many criminals use the botnet to infect other hosts to mine cryptocurrency for themselves, which has led to the proliferation of mining botnets and is referred to as cryptojacking. At present, the mechanisms specific to cryptojacking detection include host-based, Deep Packet Inspection (DPI) based, and dynamic network characteristics based. Host-based detection requires detection installation and running at each host, and the other two are heavyweight. Besides, DPI-based detection is a breach of privacy and loses efficacy if encountering encrypted traffic. This paper de-signs a lightweight cryptojacking traffic detection method based on network behavior features for an ISP, without referring to the payload of network traffic. We set up an environment to collect cryptojacking traffic and conduct a cryptojacking traffic study to obtain its discriminative network traffic features extracted from only the first four packets in a flow. Our experimental study suggests that the machine learning classifier, random forest, based on the extracted discriminative network traffic features can accurately and efficiently detect cryptojacking traffic.
Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm. 2021 Emerging Trends in Industry 4.0 (ETI 4.0). :1—7.
.
2021. In present scenario features like low-cost, power-efficientand easy-to-implement Wireless Sensor Networks (WSN’s) has become one of growing prospects.though, its security issues have become a popular topic of research nowadays. Specific attacks often experience the security issues as they easily combined with other attacks to destroy the network. In this paper, we discuss about detecting the particular attacks like Sybil, Black-holeand Denial of Service (DoS) attacks on WSNs. These networks are more vulnerable to them. We attempt to investigate the security measures and the applicability of the AODV protocol to detect and manage specific types of network attacks in VANET.The RSA algorithm is proposed here, as it is capable of detecting sensor nodes ormessages transmitted from sensor nodes to the base station and prevents network from being attacked by the source node. It also improves the security mechanism of the AODV protocol. This simulation set up is performed using MATLAB simulation tool
Detection of False Data Injection Attacks in smart grids based on cubature Kalman Filtering. 2021 33rd Chinese Control and Decision Conference (CCDC). :2526—2532.
.
2021. The false data injection attacks (FDIAs) in smart grids can offset the power measurement data and it can bypass the traditional bad data detection mechanism. To solve this problem, a new detection mechanism called cosine similarity ratio which is based on the dynamic estimation algorithm of square root cubature Kalman filter (SRCKF) is proposed in this paper. That is, the detection basis is the change of the cosine similarity between the actual measurement and the predictive measurement before and after the attack. When the system is suddenly attacked, the actual measurement will have an abrupt change. However, the predictive measurement will not vary promptly with it owing to the delay of Kalman filter estimation. Consequently, the cosine similarity between the two at this moment has undergone a change. This causes the ratio of the cosine similarity at this moment and that at the initial moment to fluctuate considerably compared to safe operation. If the detection threshold is triggered, the system will be judged to be under attack. Finally, the standard IEEE-14bus test system is used for simulation experiments to verify the effectiveness of the proposed detection method.
Developing Computer Applications without any OS or Kernel in a Multi-core Architecture. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1—8.
.
2021. Over the years, operating systems (OSs) have grown significantly in complexity and size providing attackers with more avenues to compromise their security. By eliminating the OS, it becomes possible to develop general-purpose non-embedded applications that are free of typical OS-related vulnerabilities. Such applications are simpler and smaller in size, making it easier secure the application code. Bare machine computing (BMC) applications run on ordinary desktops and laptops without the support of any operating system or centralized kernel. Many BMC applications have been developed previously for single-core systems. We show how to build BMC applications for multicore systems by presenting the design and implementation of a novel UDP-based bare machine prototype Web server for a multicore architecture. We also include preliminary experimental results from running the server on the Internet. This work provides a foundation for building secure computer applications that run on multicore systems without the need for intermediary software.
Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
.
2021. Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Development of Fast Exponentiation Algorithm «To Center and Back. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
.
2021. In the present paper the exponentiation algorithm “To Center and Back” based on the idea of the additive chains exponentiation method is developed. The created by authors algorithm allows to reduce the calculation time and to improve the performance of conventional and cryptographic algorithms, as pre-quantum and quantum, and then post-quantum, in which it is necessary to use the fast exponentiation algorithm.
Development of the Algorithm to Ensure the Protection of Confidential Data in Cloud Medical Information System. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–4.
.
2021. The main purpose to ensure the security for confidential medical data is to develop and implement the architecture of a medical cloud system, for storage, systematization, and processing of survey results (for example EEG) jointly with an algorithm for ensuring the protection of confidential data based on a fully homomorphic cryptosystem. The most optimal algorithm based on the test results (analysis of the time of encryption, decryption, addition, multiplication, the ratio of the signal-to-noise of the ciphertext to the open text), has been selected between two potential applicants for using (BFV and CKKS schemes). As a result, the CKKS scheme demonstrates maximal effectiveness in the context of the criticality of the requirements for an important level of security.
Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. 2021 IEEE Symposium on Security and Privacy (SP). :484—500.
.
2021. Internet of Things (IoT) devices have rooted themselves in the everyday life of billions of people. Thus, researchers have applied automated bug finding techniques to improve their overall security. However, due to the difficulties in extracting and emulating custom firmware, black-box fuzzing is often the only viable analysis option. Unfortunately, this solution mostly produces invalid inputs, which are quickly discarded by the targeted IoT device and do not penetrate its code. Another proposed approach is to leverage the companion app (i.e., the mobile app typically used to control an IoT device) to generate well-structured fuzzing inputs. Unfortunately, the existing solutions produce fuzzing inputs that are constrained by app-side validation code, thus significantly limiting the range of discovered vulnerabilities.In this paper, we propose a novel approach that overcomes these limitations. Our key observation is that there exist functions inside the companion app that can be used to generate optimal (i.e., valid yet under-constrained) fuzzing inputs. Such functions, which we call fuzzing triggers, are executed before any data-transforming functions (e.g., network serialization), but after the input validation code. Consequently, they generate inputs that are not constrained by app-side sanitization code, and, at the same time, are not discarded by the analyzed IoT device due to their invalid format. We design and develop Diane, a tool that combines static and dynamic analysis to find fuzzing triggers in Android companion apps, and then uses them to fuzz IoT devices automatically. We use Diane to analyze 11 popular IoT devices, and identify 11 bugs, 9 of which are zero days. Our results also show that without using fuzzing triggers, it is not possible to generate bug-triggering inputs for many devices.
Differentially Private String Sanitization for Frequency-Based Mining Tasks. 2021 IEEE International Conference on Data Mining (ICDM). :41—50.
.
2021. Strings are used to model genomic, natural language, and web activity data, and are thus often shared broadly. However, string data sharing has raised privacy concerns stemming from the fact that knowledge of length-k substrings of a string and their frequencies (multiplicities) may be sufficient to uniquely reconstruct the string; and from that the inference of such substrings may leak confidential information. We thus introduce the problem of protecting length-k substrings of a single string S by applying Differential Privacy (DP) while maximizing data utility for frequency-based mining tasks. Our theoretical and empirical evidence suggests that classic DP mechanisms are not suitable to address the problem. In response, we employ the order-k de Bruijn graph G of S and propose a sampling-based mechanism for enforcing DP on G. We consider the task of enforcing DP on G using our mechanism while preserving the normalized edge multiplicities in G. We define an optimization problem on integer edge weights that is central to this task and develop an algorithm based on dynamic programming to solve it exactly. We also consider two variants of this problem with real edge weights. By relaxing the constraint of integer edge weights, we are able to develop linear-time exact algorithms for these variants, which we use as stepping stones towards effective heuristics. An extensive experimental evaluation using real-world large-scale strings (in the order of billions of letters) shows that our heuristics are efficient and produce near-optimal solutions which preserve data utility for frequency-based mining tasks.
Digital Evidence Case Management Tool for Collaborative Digital Forensics Investigation. 2021 3rd International Cyber Resilience Conference (CRC). :1–4.
.
2021. Digital forensics investigation process begins with the acquisition, investigation until the presentation of investigation findings. Investigators are required to manage bits and pieces of digital evidence in the cloud and to correlate with evidence found in physical machines and network. The process could be made easy with a proper case management tool that is hosted in the web. The challenge of maintaining chain of custody, determining access to evidence, assignment of forensics investigator could be overcome when digital evidence is fully integrated in a single platform. Our proposed case management tool streamlines information gathering and integrates information on different platforms, shares information, tracks cases, and uploads data directly into a database. In addition, the case management tool facilitates the collaboration of investigators through sharing of forensics findings. These features allow case owner or administrator to track and monitor investigation progress in a forensically sound manner.