Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021-08-11
Sayan Mitra.  2021.  Verifying Cyber-Physical Systems A Path to Safe Autonomy.
A graduate-level textbook that presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. Verification aims to establish whether a system meets a set of requirements. For such cyber-physical systems as driverless cars, autonomous spacecraft, and air-traffic management systems, verification is key to building safe systems with high levels of assurance. This graduate-level textbook presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. It distills the ideas and algorithms that have emerged from more than three decades of research and have led to the creation of industrial-scale modeling and verification techniques for cyber-physical systems. The book discusses such computer science concepts as undecidability and abstractions, alongside concepts from control theory including multiple Lyapunov functions and barrier certificates, all within a unified mathematical language. It explains algorithms for reachability analysis, counter-example guided abstraction refinement, and data-driven verification, as well as the key data structures that enable their effective implementation. Other topics include invariants, deductive verification, progress analysis, sensitivity analysis, simulation relations, fairness, model checking, satisfiability modulo theories, temporal logics, compositional reasoning, convergence analysis, asynchronous processes, and verification of black-box systems.The book provides more than twenty examples of cyber-physical verification, ranging from conceptual models to advanced driving-assist systems. Each chapter offers exercise problems; supporting materials, including slides, simulation code, additional exercises, and solutions are available on the book's website.
2022-01-31
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2022-03-01
Sarihi, Amin, Patooghy, Ahmad, Hasanzadeh, Mahdi, Abdelrehim, Mostafa, Badawy, Abdel-Hameed A..  2021.  Securing Network-on-Chips via Novel Anonymous Routing. 2021 15th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :29–34.
Network-on-Chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-Chips (SoCs). However, the shared communication resources in NoCs, e.g., channels, buffers, and routers might be used to conduct attacks compromising the security of NoC-based SoCs. Almost all of the proposed encryption-based protection methods in the literature need to leave some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This uncovers the source/destination information of the packet to malicious routers, which can be used in various attacks. In this paper, we propose the idea of secure anonymous routing with minimal hardware overhead to hide the source/destination information while exchanging secure information over the network. The proposed method uses a novel source-routing algorithm that works with encrypted destination addresses and prevents malicious routers from discovering the source/destination of secure packets. To support our proposal, we have designed and implemented a new NoC architecture that works with encrypted addresses. The conducted hardware evaluations show that the proposed security solution combats the security threats at an affordable cost of 1% area and 10% power overheads chip-wide.
2021-08-11
Severin Kacianka, Alexander Pretschner.  2021.  Designing Accountable Systems. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. :424–437.
Accountability is an often called for property of technical systems. It is a requirement for algorithmic decision systems, autonomous cyber-physical systems, and for software systems in general. As a concept, accountability goes back to the early history of Liberalism and is suggested as a tool to limit the use of power. This long history has also given us many, often slightly differing, definitions of accountability. The problem that software developers now face is to understand what accountability means for their systems and how to reflect it in a system's design. To enable the rigorous study of accountability in a system, we need models that are suitable for capturing such a varied concept. In this paper, we present a method to express and compare different definitions of accountability using Structural Causal Models. We show how these models can be used to evaluate a system's design and present a small use case based on an autonomous car.
2021-08-13
Severin Kacianka, Alexander Pretschner.  2021.  Designing Accountable Systems. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. :424–437.
Accountability is an often called for property of technical systems. It is a requirement for algorithmic decision systems, autonomous cyber-physical systems, and for software systems in general. As a concept, accountability goes back to the early history of Liberalism and is suggested as a tool to limit the use of power. This long history has also given us many, often slightly differing, definitions of accountability. The problem that software developers now face is to understand what accountability means for their systems and how to reflect it in a system's design. To enable the rigorous study of accountability in a system, we need models that are suitable for capturing such a varied concept. In this paper, we present a method to express and compare different definitions of accountability using Structural Causal Models. We show how these models can be used to evaluate a system's design and present a small use case based on an autonomous car.
2021-08-12
Klaus Bengler, Bianca Biebl, Werner Damm, Martin Fränzle, Willem Hagemann, Moritz Held, Klas Ihme, Severin Kacianka, Sebastian Lehnhoff, Andreas Luedtke et al..  2021.  A Metamodel of Human Cyber Physical Systems. Working Document of the PIRE Project on Assuring Individual, Social, and Cultural Embeddedness of Autonomous Cyber-Physical Systems (ISCE-ACPS). :41.
2022-01-12
Chatzigiannis, Panagiotis, Baldimtsi, Foteini, Kolias, Constantinos, Stavrou, Angelos.  2021.  Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors. Proceedings of the International Conference on Internet-of-Things Design and Implementation (IoTDI).
We propose Black-Box IoT (BBox-IoT), a new ultra-lightweight black-box system for authenticating and storing IoT data. BBox-IoT is tailored for deployment on IoT devices (including low-Size Weight and Power sensors) which are extremely constrained in terms of computation, storage, and power. By utilizing core Blockchain principles, we ensure that the collected data is immutable and tamper-proof while preserving data provenance and non-repudiation. To realize BBox-IoT, we designed and implemented a novel chain-based hash signature scheme which only requires hashing operations and removes all synchronicity dependencies between signer and verifier. Our approach enables low-SWaP devices to authenticate removing reliance on clock synchronization. Our evaluation results show that BBox-IoT is practical in Industrial Internet of Things (IIoT) environments: even devices equipped with 16MHz microcontrollers and 2KB memory can broadcast their collected data without requiring heavy cryptographic operations or synchronicity assumptions. Finally, when compared to industry standard ECDSA, our approach is two and three orders of magnitude faster for signing and verification operations respectively. Thus, we are able to increase the total number of signing operations by more than 5000% for the same amount of power.
2023-01-30
Chatzigiannis, Panagiotis, Baldimtsi, Foteini, Kolias, Constantinos, Stavrou, Angelos.  2021.  Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors. IoTDI '21: Proceedings of the International Conference on Internet-of-Things Design and Implementation.

We propose Black-Box IoT (BBox-IoT), a new ultra-lightweight black-box system for authenticating and storing IoT data. BBox-IoT is tailored for deployment on IoT devices (including low-Size Weight and Power sensors) which are extremely constrained in terms of computation, storage, and power. By utilizing core Blockchain principles, we ensure that the collected data is immutable and tamper-proof while preserving data provenance and non-repudiation. To realize BBox-IoT, we designed and implemented a novel chain-based hash signature scheme which only requires hashing operations and removes all synchronicity dependencies between signer and verifier. Our approach enables low-SWaP devices to authenticate removing reliance on clock synchronization. Our evaluation results show that BBox-IoT is practical in Industrial Internet of Things (IIoT) environments: even devices equipped with 16MHz microcontrollers and 2KB memory can broadcast their collected data without requiring heavy cryptographic operations or synchronicity assumptions. Finally, when compared to industry standard ECDSA, our approach is two and three orders of magnitude faster for signing and verification operations respectively. Thus, we are able to increase the total number of signing operations by more than 5000% for the same amount of power.

2022-01-12
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
Weyns, Danny, Schmerl, Bradley, Kishida, Masako, Leva, Alberto, Litoiu, Marin, Ozay, Necmiye, Paterson, Colin, undefined.  2021.  Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Two established approaches to engineer adaptive systems are architecture-based adaptation that uses a Monitor-Analysis-Planning-Executing (MAPE) loop that reasons over architectural models (aka Knowledge) to make adaptation decisions, and control-based adaptation that relies on principles of control theory (CT) to realize adaptation. Recently, we also observe a rapidly growing interest in applying machine learning (ML) to support different adaptation mechanisms. While MAPE and CT have particular characteristics and strengths to be applied independently, in this paper, we are concerned with the question of how these approaches are related with one another and whether combining them and supporting them with ML can produce better adaptive systems. We motivate the combined use of different adaptation approaches using a scenario of a cloud-based enterprise system and illustrate the analysis when combining the different approaches. To conclude, we offer a set of open questions for further research in this interesting area.
Lucas, Keane, Sharif, Mahmood, Bauer, Lujo, Reiter, Michael K., Shintre, Saurabh.  2021.  Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes. ASIA CCS '21: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security.
Motivated by the transformative impact of deep neural networks (DNNs) in various domains, researchers and anti-virus vendors have proposed DNNs for malware detection from raw bytes that do not require manual feature engineering. In this work, we propose an attack that interweaves binary-diversification techniques and optimization frameworks to mislead such DNNs while preserving the functionality of binaries. Unlike prior attacks, ours manipulates instructions that are a functional part of the binary, which makes it particularly challenging to defend against. We evaluated our attack against three DNNs in white- and black-box settings, and found that it often achieved success rates near 100%. Moreover, we found that our attack can fool some commercial anti-viruses, in certain cases with a success rate of 85%. We explored several defenses, both new and old, and identified some that can foil over 80% of our evasion attempts. However, these defenses may still be susceptible to evasion by attacks, and so we advocate for augmenting malware-detection systems with methods that do not rely on machine learning.
2023-01-30
Coblenz, Michael, Kambhatla, Gauri, Koronkevich, Paulette, Wise, Jenna, Barnaby, Celeste, Aldrich, Jonathan, Sunshine, Joshua, Myers, Brad A..  2021.  PLIERS: A Process that Integrates User-Centered Methods into Programming Language Design. ACM Transactions on Computer-Human Interaction. 28(4)

Programming language design requires making many usability-related design decisions. However, existing HCI methods can be impractical to apply to programming languages: languages have high iteration costs, programmers require significant learning time, and user performance has high variance. To address these problems, we adapted both formative and summative HCI methods to make them more suitable for programming language design. We integrated these methods into a new process, PLIERS, for designing programming languages in a user-centered way. We assessed PLIERS by using it to design two new programming languages. Glacier extends Java to enable programmers to express immutability properties effectively and easily. Obsidian is a language for blockchains that includes verification of critical safety properties. Empirical studies showed that the PLIERS process resulted in languages that could be used effectively by many programmers and revealed additional opportunities for language improvement.

2022-01-12
Cámara, Javier, Silva, Mariana, Garlan, David, Schmerl, Bradley.  2021.  Explaining Architectural Design Tradeoff Spaces: a Machine Learning Approach. Proceedings of the 15th European Conference on Software Architecture, Virtual (Originally, Vaxjo Sweden).
In software design, guaranteeing the correctness of run-time system behavior while achieving an acceptable balance among multiple quality attributes remains a challenging problem. Moreover, providing guarantees about the satisfaction of those requirements when systems are subject to uncertain environments is even more challenging. While recent developments in architectural analysis techniques can assist architects in exploring the satisfaction of quantitative guarantees across the design space, existing approaches are still limited because they do not explicitly link design decisions to satisfaction of quality requirements. Furthermore, the amount of information they yield can be overwhelming to a human designer, making it difficult to distinguish the forest through the trees. In this paper, we present an approach to analyzing architectural design spaces that addresses these limitations and provides a basis to enable the explainability of design tradeoffs. Our approach combines dimensionality reduction techniques employed in machine learning pipelines with quantitative verification to enable architects to understand how design decisions contribute to the satisfaction of strict quantitative guarantees under uncertainty across the design space. Our results show feasibility of the approach in two case studies and evidence that dimensionality reduction is a viable approach to facilitate comprehension of tradeoffs in poorly-understood design spaces.
Weyns, Danny, Bures, Tomas, Calinescu, Radu, Craggs, Barnaby, Fitzgerald, John, Garlan, David, Nuseibeh, Bashar, Pasquale, Liliana, Rashid, Awais, Ruchkin, Ivan et al..  2021.  Six Software Engineering Principles for Smarter Cyber-Physical Systems. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), Proceedings of the Workshop on Self-Improving System Integration.
Cyber-Physical Systems (CPS) integrate computational and physical components. With the digitisation of society and industry and the progressing integration of systems, CPS need to become “smarter” in the sense that they can adapt and learn to handle new and unexpected conditions, and improve over time. Smarter CPS present a combination of challenges that existing engineering methods have difficulties addressing: intertwined digital, physical and social spaces, need for heterogeneous modelling formalisms, demand for context-tied cooperation to achieve system goals, widespread uncertainty and disruptions in changing contexts, inherent human constituents, and continuous encounter with new situations. While approaches have been put forward to deal with some of these challenges, a coherent perspective on engineering smarter CPS is lacking. In this paper, we present six engineering principles for addressing the challenges of smarter CPS. As smarter CPS are software-intensive systems, we approach them from a software engineering perspective with the angle of self-adaptation that offers an effective approach to deal with run-time change. The six principles create an integrated landscape for the engineering and operation of smarter CPS.
2021-08-11
2022-01-10
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
2022-01-25
Cosic, Jasmin, Schlehuber, Christian, Morog, Drazen.  2021.  Digital Forensic Investigation Process in Railway Environment. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
The digitalization process did not circumvent either railway domain. With new technology and new functionality, such as digital interlocking system, automated train operation, object recognition, GPS positioning, traditional railway domain got a vulnerability that can be exploited. Another issue is usage of CotS (Commercial-of-the-Shelf) hardware and software and openness of traditionally closed system. Most of published similar paper are focused on cyber security and security & safety model for securing of assessment in this kind of domain, but this paper will deal with this upcoming railway technology and digital investigation process in such kind of environment. Digital investigation process will be presented, but not only in ICS and SCADA system, but also in specific, railway environment. Framework for investigation process and for maintaining chain of custody in railway domain will be proposed.
2022-08-26
U, Shriya, S, Veena H.  2021.  Increasing Grid Power Transmission Using PV-STATCOM. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
Renewable energy resource plays an important role due to increasing energy claim. Power generation by PV technology is one of the fastest growing renewable energy sources due to its clean, economical and sustainable property. Grid integrated PV systems plays an important role in power generation sector. As the energy demand is increasing day by day, the power transfer capability of transmission line is increasing which leads various problems like stability, increase in fault current, congestion etc. To overcome the problem, we can use either FACTS device or battery storage or construct additional lines which is cost effective. This paper deals with grid connected PV system, which functions as PV-STATCOM. Voltage and damping control are used to elevate the power transfer capacity and to achieve regulated voltage within the limits at the point of common coupling (PCC). The studies are performed on SMIB and the simulation is carried out in MATLAB/SIMULINK environment.
2022-03-02
Tang, Fei, Jia, Hao, Shi, Linxin, Zheng, Minghong.  2021.  Information Security Protection of Power System Computer Network. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1226–1229.
With the reform of the power market(PM), various power applications based on computer networks have also developed. As a network application system supporting the operation of the PM, the technical support system(TSS) of the PM has become increasingly important for its network information security(NIS). The purpose of this article is to study the security protection of computer network information in power systems. This paper proposes an identity authentication algorithm based on digital signatures to verify the legitimacy of system user identities; on the basis of PMI, according to the characteristics of PM access control, a role-based access control model with time and space constraints is proposed, and a role-based access control model is designed. The access control algorithm based on the attribute certificate is used to manage the user's authority. Finally, according to the characteristics of the electricity market data, the data security transmission algorithm is designed and the feasibility is verified. This paper presents the supporting platform for the security test and evaluation of the network information system, and designs the subsystem and its architecture of the security situation assessment (TSSA) and prediction, and then designs the key technologies in this process in detail. This paper implements the subsystem of security situation assessment and prediction, and uses this subsystem to combine with other subsystems in the support platform to perform experiments, and finally adopts multiple manifestations, and the trend of the system's security status the graph is presented to users intuitively. Experimental studies have shown that the residual risks in the power system after implementing risk measures in virtual mode can reduce the risk value of the power system to a fairly low level by implementing only three reinforcement schemes.
2022-03-14
Farooq, Muhammad Usman, Rashid, Muhammad, Azam, Farooque, Rasheed, Yawar, Anwar, Muhammad Waseem, Shahid, Zohaib.  2021.  A Model-Driven Framework for the Prevention of DoS Attacks in Software Defined Networking (SDN). 2021 IEEE International Systems Conference (SysCon). :1–7.
Security is a key component of the network. Software Defined Networking (SDN) is a refined form of traditional network management system. It is a new encouraging approach to design-build and manage networks. SDN decouples control plane (software-based router) and data plane (software-based switch), hence it is programmable. Consequently, it facilitates implementation of security based applications for the prevention of DOS attacks. Various solutions have been proposed by researches for handling of DOS attacks in SDN. However, these solutions are very limited in scope, complex, time consuming and change resistant. In this article, we have proposed a novel model driven framework i.e. MDAP (Model Based DOS Attacks Prevention) Framework. Particularly, a meta model is proposed. As tool support, a tree editor and a Sirius based graphical modeling tool with drag drop palette have been developed in Oboe designer community edition. The tool support allows modeling and visualization of simple and complex network topology scenarios. A Model to Text transformation engine has also been made part of framework that generates java code for the Floodlight SDN controller from the modeled scenario. The validity of proposed framework has been demonstrated via case study. The results prove that the proposed framework can effectively handle DOS attacks in SDN with simplicity as per the true essence of MDSE and can be reliably used for the automation of security based applications in order to deny DOS attacks in SDN.
2022-08-12
Alatoun, Khitam, Shankaranarayanan, Bharath, Achyutha, Shanmukha Murali, Vemuri, Ranga.  2021.  SoC Trust Validation Using Assertion-Based Security Monitors. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :496—503.
Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.
2022-02-04
Satariano, Roberta, Parlato, Loredana, Caruso, Roberta, Ahmad, Halima Giovanna, Miano, Alessandro, Di Palma, Luigi, Salvoni, Daniela, Montemurro, Domenico, Tafuri, Francesco, Pepe, Giovanni Piero et al..  2021.  Unconventional magnetic hysteresis of the Josephson supercurrent in magnetic Josephson Junctions. 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE). :1–4.
In Magnetic Josephson Junctions (MJJs) based on Superconductor-Insulator-Superconductor-Ferromagnet-Superconductor (SIS’FS), we provide evidence of an unconventional magnetic field behavior of the critical current characterized by an inverted magnetic hysteresis, i.e., an inverted shift of the whole magnetic field pattern when sweeping the external field. By thermoremanence measurements of S/F/S trilayers, we have ruled out that this uncommon behavior could be related to the F-stray fields. In principle, this finding could have a crucial role in the design and proper functioning of scalable cryogenic memories.