Biblio
Skyline computation is an increasingly popular query, with broad applicability to many domains. Given the trend to outsource databases, and due to the sensitive nature of the data (e.g., in healthcare), it is essential to evaluate skylines on encrypted datasets. Research efforts acknowledged the importance of secure skyline computation, but existing solutions suffer from several shortcomings: (i) they only provide ad-hoc security; (ii) they are prohibitively expensive; or (iii) they rely on assumptions such as the presence of multiple non-colluding parties in the protocol. Inspired by solutions for secure nearest-neighbors, we conjecture that a secure and efficient way to compute skylines is through result materialization. However, materialization is much more challenging for skylines queries due to large space requirements. We show that pre-computing skyline results while minimizing storage overhead is NP-hard, and we provide heuristics that solve the problem more efficiently, while maintaining storage at reasonable levels. Our algorithms are novel and also applicable to regular skyline computation, but we focus on the encrypted setting where materialization reduces the response time of skyline queries from hours to seconds. Extensive experiments show that we clearly outperform existing work in terms of performance, and our security analysis proves that we obtain a small (and quantifiable) data leakage.
The power grid is considered to be the most critical piece of infrastructure in the United States because each of the other fifteen critical infrastructures, as defined by the Cyberse-curity and Infrastructure Security Agency (CISA), require the energy sector to properly function. Due the critical nature of the power grid, the ability to detect anomalies in the power grid is of critical importance to prevent power outages, avoid damage to sensitive equipment and to maintain a working power grid. Over the past few decades, the modern power grid has evolved into a large Cyber Physical System (CPS) equipped with wide area monitoring systems (WAMS) and distributed control. As smart technology advances, the power grid continues to be upgraded with high fidelity sensors and measurement devices, such as phasor measurement units (PMUs), that can report the state of the system with a high temporal resolution. However, this influx of data can often become overwhelming to the legacy Supervisory Control and Data Acquisition (SCADA) system, as well as, the power system operator. In this paper, we propose using a deep learning (DL) convolutional neural network (CNN) as a module within the Automatic Network Guardian for ELectrical systems (ANGEL) Digital Twin environment to detect physical faults in a power system. The presented approach uses high fidelity measurement data from the IEEE 9-bus and IEEE 39-bus benchmark power systems to not only detect if there is a fault in the power system but also applies the algorithm to classify which bus contains the fault.
In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.
In this paper we propose a security and cost aware scheduling heuristic for real-time workflow jobs that process Internet of Things (IoT) data with various security requirements. The environment under study is a four-tier architecture, consisting of IoT, mist, fog and cloud layers. The resources in the mist, fog and cloud tiers are considered to be heterogeneous. The proposed scheduling approach is compared to a baseline strategy, which is security aware, but not cost aware. The performance evaluation of both heuristics is conducted via simulation, under different values of security level probabilities for the initial IoT input data of the entry tasks of the workflow jobs.