Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2022-05-12
Şengül, Özkan, Özkılıçaslan, Hasan, Arda, Emrecan, Yavanoğlu, Uraz, Dogru, Ibrahim Alper, Selçuk, Ali Aydın.  2021.  Implementing a Method for Docker Image Security. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :34–39.
Containers that can be easily created, transported and scaled with the use of container-based virtualization technologies work better than classical virtualization technologies and provide efficient resource usage. The Docker platform is one of the most widely used solutions among container-based virtualization technologies. The OS-level virtualization of the Docker platform and the container’s use of the host operating system kernel may cause security problems. In this study, a method including static and dynamic analysis has been proposed to ensure Docker image and container security. In the static analysis phase of the method, the packages of the images are scanned for vulnerabilities and malware. In the dynamic analysis phase, Docker containers are run for a certain period of time, after the open port scanning, network traffic is analyzed with the Snort3. Seven Docker images are analyzed and the results are shared.
2022-05-19
Shimchik, N. V., Ignatyev, V. N., Belevantsev, A. A..  2021.  Improving Accuracy and Completeness of Source Code Static Taint Analysis. 2021 Ivannikov Ispras Open Conference (ISPRAS). :61–68.

Static analysis is a general name for various methods of program examination without actually executing it. In particular, it is widely used to discover errors and vulnerabilities in software. Taint analysis usually denotes the process of checking the flow of user-provided data in the program in order to find potential vulnerabilities. It can be performed either statically or dynamically. In the paper we evaluate several improvements for the static taint analyzer Irbis [1], which is based on a special case of interprocedural graph reachability problem - the so-called IFDS problem, originally proposed by Reps et al. [2]. The analyzer is currently being developed at the Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS). The evaluation is based on several real projects with known vulnerabilities and a subset of the Juliet Test Suite for C/C++ [3]. The chosen subset consists of more than 5 thousand tests for 11 different CWEs.

2022-04-13
Govindaraj, Logeswari, Sundan, Bose, Thangasamy, Anitha.  2021.  An Intrusion Detection and Prevention System for DDoS Attacks using a 2-Player Bayesian Game Theoretic Approach. 2021 4th International Conference on Computing and Communications Technologies (ICCCT). :319—324.

Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.

2022-03-01
Leevy, Joffrey L., Hancock, John, Khoshgoftaar, Taghi M., Seliya, Naeem.  2021.  IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC). :41–49.
The exponential increase in the use of Internet of Things (IoT) devices has been accompanied by a spike in cyberattacks on IoT networks. In this research, we investigate the Bot-IoT dataset with a focus on classifying IoT reconnaissance attacks. Reconnaissance attacks are a foundational step in the cyberattack lifecycle. Our contribution is centered on the building of predictive models with the aid of Random Undersampling (RUS) and ensemble Feature Selection Techniques (FSTs). As far as we are aware, this type of experimentation has never been performed for the Reconnaissance attack category of Bot-IoT. Our work uses the Area Under the Receiver Operating Characteristic Curve (AUC) metric to quantify the performance of a diverse range of classifiers: Light GBM, CatBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), and a Multilayer Perceptron (MLP). For this study, we determined that the best learners are DT and DT-based ensemble classifiers, the best RUS ratio is 1:1 or 1:3, and the best ensemble FST is our ``6 Agree'' technique.
Wang, Weidong, Zheng, Yufu, Bao, Yeling, Shui, Shengkun, Jiang, Tao.  2021.  Modulated Signal Recognition Based on Feature-Multiplexed Convolutional Neural Networks. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:621–624.
Modulated signal identification plays a crucial role in both military reconnaissance and civilian signal regulation. Traditionally, modulated signal identification is based on high-order statistics, but this approach has many drawbacks. With the development of deep learning, its advantages are fully exploited by combining it with modulated signals to avoid the complex process of computing a priori knowledge while having good fault tolerance. In this paper, ten digital modulated signals are classified and recognized, and improvements are made on the basis of convolutional neural networks, using feature reuse to increase the depth of the convolutional layer and extract signal features with better results. After experimental analysis, the recognition accuracy increases with the rise of the signal-to-noise ratio, and can reach 90% and above when the signal-to-noise ratio is 30dB.
2022-04-01
Ashwini, S D, Patil, Annapurna P, Shetty, Savita K.  2021.  Moving Towards Blockchain-Based Solution for Ensuring Secure Storage of Medical Images. 2021 IEEE 18th India Council International Conference (INDICON). :1—5.
Over the last few years, the world has been moving towards digital healthcare, where harnessing medical data distributed across multiple healthcare providers is essential to achieving personalized treatments. Though the efficiency and speed of the diagnosis process have increased due to the digitalization of healthcare data, it is at constant risk of cyberattacks. Medical images, in particular, seem to have become a regular victim of hackers, due to which there is a need to find a feasible solution for storing them securely. This work proposes a blockchain-based framework that leverages the InterPlanetary File system (IPFS) to provide decentralized storage for medical images. Our proposed blockchain storage model is implemented in the IPFS distributed file-sharing system, where each image is stored on IPFS, and its corresponding unique content-addressed hash is stored in the blockchain. The proposed model ensures the security of the medical images without any third-party dependency and eliminates the obstacles that arise due to centralized storage.
2022-12-01
Starks, Brandon E., Robinson, Karsen, Sitaula, Binod, Chrysler, Andrew M..  2021.  Physical Layer Wireless Security Through the Rotation of Polarized Antennas. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). :1483–1484.
A wireless communication system with rotating linearly polarized antennas is built and tested as a method for increasing physical layer security. Controlling the linear polarization angle from 0° to 180° yields bit error rates greater than 20% for 40° of rotation.
2022-06-14
Hataba, Muhammad, Sherif, Ahmed, Elsersy, Mohamed, Nabil, Mahmoud, Mahmoud, Mohamed, Almotairi, Khaled H..  2021.  Privacy-Preserving Biometric-based Authentication Scheme for Electric Vehicles Charging System. 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM). :86–91.
Nowadays, with the continuous increase in oil prices and the worldwide shift towards clean energy, all-electric vehicles are booming. Thence, these vehicles need widespread charging systems operating securely and reliably. Consequently, these charging systems need the most robust cybersecurity measures and strong authentication mechanisms to protect its user. This paper presents a new security scheme leveraging human biometrics in terms of iris recognition to defend against multiple types of cyber-attacks such as fraudulent identities, man-in-the-middle attacks, or unauthorized access to electric vehicle charging stations. Fundamentally, the proposed scheme implements a security mechanism based on the inherently unique characteristics of human eye biometric. The objective of the proposed scheme is to enhance the security of electric vehicle charging stations by using a low-cost and efficient authentication using k-Nearest Neighbours (KNN), which is a lightweight encryption algorithm.We tested our system on high-quality images obtained from the standard IITD iris database to search over the encrypted database and authenticate a legitimate user. The results showed that our proposed technique had minimal communication and computation overhead, which is quite suitable for the resource-limited charging station devices. Furthermore, we proved that our scheme outperforms other existing techniques.
2022-06-09
Wang, Jun, Wang, Wen, Wu, Dan, Lei, Ting, Liu, DunNan, Li, PeiJun, Su, Shu.  2021.  Research on Business Model of Internet of Vehicles Platform Based on Token Economy. 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM). :120–124.
With the increasing number of electric vehicles, the scale of the market also increases. In the past, the electric vehicle market had problems such as opaque information, numerous levels and data leakage, which were criticized for the impact of the overall development and policies of the electric vehicle industry. In view of the problems existing in the transparency and security of big data management transactions of the Internet of vehicles, this paper combs the commercial operation framework of the Internet of Vehicles Platform, analyses the feasibility and necessity of establishing the token system of the Internet of Vehicles Platform, and constructs the token economic system architecture of the Internet of Vehicles Platform and its development path.
2022-08-26
Sun, Pengyu, Zhang, Hengwei, Ma, Junqiang, Li, Chenwei, Mi, Yan, Wang, Jindong.  2021.  A Selection Strategy for Network Security Defense Based on a Time Game Model. 2021 International Conference on Digital Society and Intelligent Systems (DSInS). :223—228.
Current network assessment models often ignore the impact of attack-defense timing on network security, making it difficult to characterize the dynamic game of attack-defense effectively. To effectively manage the network security risks and reduce potential losses, in this article, we propose a selection strategy for network defense based on a time game model. By analyzing the attack-defense status by analogy with the SIR infectious disease model, construction of an optimal defense strategy model based on time game, and calculation of the Nash equilibrium of the the attacker and the defender under different strategies, we can determine an optimal defense strategy. With the Matlab simulation, this strategy is verified to be effective.
2022-07-12
Kanca, Ali Melih, Sagiroglu, Seref.  2021.  Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
2022-07-14
Ayub, Md. Ahsan, Sirai, Ambareen.  2021.  Similarity Analysis of Ransomware based on Portable Executable (PE) File Metadata. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–6.
Threats, posed by ransomware, are rapidly increasing, and its cost on both national and global scales is becoming significantly high as evidenced by the recent events. Ransomware carries out an irreversible process, where it encrypts victims' digital assets to seek financial compensations. Adversaries utilize different means to gain initial access to the target machines, such as phishing emails, vulnerable public-facing software, Remote Desktop Protocol (RDP), brute-force attacks, and stolen accounts. To combat these threats of ransomware, this paper aims to help researchers gain a better understanding of ransomware application profiles through static analysis, where we identify a list of suspicious indicators and similarities among 727 active ran-somware samples. We start with generating portable executable (PE) metadata for all the studied samples. With our domain knowledge and exploratory data analysis tasks, we introduce some of the suspicious indicators of the structure of ransomware files. We reduce the dimensionality of the generated dataset by using the Principal Component Analysis (PCA) technique and discover clusters by applying the KMeans algorithm. This motivates us to utilize the one-class classification algorithms on the generated dataset. As a result, the algorithms learn the common data boundary in the structure of our studied ransomware samples, and thereby, we achieve the data-driven similarities. We use the findings to evaluate the trained classifiers with the test samples and observe that the Local Outlier Factor (LoF) performs better on all the selected feature spaces compared to the One-Class SVM and the Isolation Forest algorithms.
2022-03-02
Kotenko, Igor, Saenko, Igor, Lauta, Oleg, Karpov, Mikhail.  2021.  Situational Control of a Computer Network Security System in Conditions of Cyber Attacks. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–8.
Modern cyberattacks are the most powerful disturbance factor for computer networks, as they have a complex and devastating impact. The impact of cyberattacks is primarily aimed at disrupting the performance of computer network protection means. Therefore, managing this defense system in the face of cyberattacks is an important task. The paper examines a technique for constructing an effective control system for a computer network security system operating in real time in the context of cyber attacks. It is supposed that it is built on the basis of constructing a system state space and a stack of control decisions. The probability of finding the security system in certain state at each control step is calculated using a finite Markov chain. The technique makes it possible to predict the number of iterations for managing the security system when exposed to cyber attacks, depending on the segment of the space of its states and the selected number of transitions, as well as automatically generate control decisions. An algorithm has been developed for situational control of a computer network security system in conditions of cyber attacks. The experimental results obtained using the generated dataset demonstrated the high efficiency of the developed technique and the ability to use it to determine the parameters that are most susceptible to abnormal deviations during the impact of cyber attacks.
2022-07-29
Saxena, Nikhil, Narayanan, Ram Venkat, Meka, Juneet Kumar, Vemuri, Ranga.  2021.  SRTLock: A Sensitivity Resilient Two-Tier Logic Encryption Scheme. 2021 IEEE International Symposium on Smart Electronic Systems (iSES). :389—394.
Logic encryption is a method to improve hardware security by inserting key gates on carefully selected signals in a logic design. Various logic encryption schemes have been proposed in the past decade. Many attack methods to thwart these logic locking schemes have also emerged. The satisfiability (SAT) attack can recover correct keys for many logic obfuscation methods. Recently proposed sensitivity analysis attack can decrypt stripped functionality based logic encryption schemes. This article presents a new encryption scheme named SRTLock, which is resilient against both attacks. SRTLock method first generates 0-injection circuits and encrypts the functionality of these nodes with the key inputs. In the next step, these values are used to control the sensitivity of the functionally stripped output for specific input patterns. The resultant locked circuit is resilient against the SAT and sensitivity analysis attacks. Experimental results demonstrating this on several attacks using standard benchmark circuits are presented.
2022-04-12
Shams, Montasir, Pavia, Sophie, Khan, Rituparna, Pyayt, Anna, Gubanov, Michael.  2021.  Towards Unveiling Dark Web Structured Data. 2021 IEEE International Conference on Big Data (Big Data). :5275—5282.
Anecdotal evidence suggests that Web-search engines, together with the Knowledge Graphs and Bases, such as YAGO [46], DBPedia [13], Freebase [16], Google Knowledge Graph [52] provide rapid access to most structured information on the Web. However, taking a closer look reveals a so called "knowledge gap" [18] that is largely in the dark. For example, a person searching for a relevant job opening has to spend at least 3 hours per week for several months [2] just searching job postings on numerous online job-search engines and the employer websites. The reason why this seemingly simple task cannot be completed by typing in a few keyword queries into a search-engine and getting all relevant results in seconds instead of hours is because access to structured data on the Web is still rudimentary. While searching for a job we have many parameters in mind, not just the job title, but also, usually location, salary range, remote work option, given a recent shift to hybrid work places, and many others. Ideally, we would like to write a SQL-style query, selecting all job postings satisfying our requirements, but it is currently impossible, because job postings (and all other) Web tables are structured in many different ways and scattered all over the Web. There is neither a Web-scale generalizable algorithm nor a system to locate and normalize all relevant tables in a category of interest from millions of sources.Here we describe and evaluate on a corpus having hundreds of millions of Web tables [39], a new scalable iterative training data generation algorithm, producing high quality training data required to train Deep- and Machine-learning models, capable of generalizing to Web scale. The models, trained on such en-riched training data efficiently deal with Web scale heterogeneity compared to poor generalization performance of models, trained without enrichment [20], [25], [38]. Such models are instrumental in bridging the knowledge gap for structured data on the Web.
2022-04-13
Chahal, Jasmeen Kaur, Kaur, Puninder, Sharma, Avinash.  2021.  Distributed Denial of Service (DDoS) Attacks in Software-defined Networks (SDN). 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). :291—295.

Software-defined networking (SDN) is a new networking architecture having the concept of separation of control plane and data plane that leads the existing networks to be programmable, dynamically configurable and extremely flexible. This paradigm has huge benefits to organizations and large networks, however, its security is major issue and Distributed Denial of Service (DDoS) Attack has become a serious concern for the working of SDN. In this article, we have proposed a taxonomy of DDoS Defense Mechanisms in SDN Environment. We have categorized the various DDoS detection and mitigation techniques with respect to switch intelligence, Defense Deployment, Defense Activity and Network Flow Activities.

2022-05-03
Mu, Yanzhou, Wang, Zan, Liu, Shuang, Sun, Jun, Chen, Junjie, Chen, Xiang.  2021.  HARS: Heuristic-Enhanced Adaptive Randomized Scheduling for Concurrency Testing. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :219—230.

Concurrency programs often induce buggy results due to the unexpected interaction among threads. The detection of these concurrency bugs costs a lot because they usually appear under a specific execution trace. How to virtually explore different thread schedules to detect concurrency bugs efficiently is an important research topic. Many techniques have been proposed, including lightweight techniques like adaptive randomized scheduling (ARS) and heavyweight techniques like maximal causality reduction (MCR). Compared to heavyweight techniques, ARS is efficient in exploring different schedulings and achieves state-of-the-art performance. However, it will lead to explore large numbers of redundant thread schedulings, which will reduce the efficiency. Moreover, it suffers from the “cold start” issue, when little information is available to guide the distance calculation at the beginning of the exploration. In this work, we propose a Heuristic-Enhanced Adaptive Randomized Scheduling (HARS) algorithm, which improves ARS to detect concurrency bugs guided with novel distance metrics and heuristics obtained from existing research findings. Compared with the adaptive randomized scheduling method, it can more effectively distinguish the traces that may contain concurrency bugs and avoid redundant schedules, thus exploring diverse thread schedules effectively. We conduct an evaluation on 45 concurrency Java programs. The evaluation results show that our algorithm performs more stably in terms of effectiveness and efficiency in detecting concurrency bugs. Notably, HARS detects hard-to-expose bugs more effectively, where the buggy traces are rare or the bug triggering conditions are tricky.

2022-09-09
Jayaprasanna, M.C., Soundharya, V.A., Suhana, M., Sujatha, S..  2021.  A Block Chain based Management System for Detecting Counterfeit Product in Supply Chain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :253—257.

In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.

2022-11-18
Spyrou, Theofilos, El-Sayed, Sarah A., Afacan, Engin, Camuñas-Mesa, Luis A., Linares-Barranco, Bernabé, Stratigopoulos, Haralampos-G..  2021.  Neuron Fault Tolerance in Spiking Neural Networks. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :743–748.
The error-resiliency of Artificial Intelligence (AI) hardware accelerators is a major concern, especially when they are deployed in mission-critical and safety-critical applications. In this paper, we propose a neuron fault tolerance strategy for Spiking Neural Networks (SNNs). It is optimized for low area and power overhead by leveraging observations made from a large-scale fault injection experiment that pinpoints the critical fault types and locations. We describe the fault modeling approach, the fault injection framework, the results of the fault injection experiment, the fault-tolerance strategy, and the fault-tolerant SNN architecture. The idea is demonstrated on two SNNs that we designed for two SNN-oriented datasets, namely the N-MNIST and IBM's DVS128 gesture datasets.
2022-01-31
El-Allami, Rida, Marchisio, Alberto, Shafique, Muhammad, Alouani, Ihsen.  2021.  Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :774–779.
Deep Learning (DL) algorithms have gained popularity owing to their practical problem-solving capacity. However, they suffer from a serious integrity threat, i.e., their vulnerability to adversarial attacks. In the quest for DL trustworthiness, recent works claimed the inherent robustness of Spiking Neural Networks (SNNs) to these attacks, without considering the variability in their structural spiking parameters. This paper explores the security enhancement of SNNs through internal structural parameters. Specifically, we investigate the SNNs robustness to adversarial attacks with different values of the neuron's firing voltage thresholds and time window boundaries. We thoroughly study SNNs security under different adversarial attacks in the strong white-box setting, with different noise budgets and under variable spiking parameters. Our results show a significant impact of the structural parameters on the SNNs' security, and promising sweet spots can be reached to design trustworthy SNNs with 85% higher robustness than a traditional non-spiking DL system. To the best of our knowledge, this is the first work that investigates the impact of structural parameters on SNNs robustness to adversarial attacks. The proposed contributions and the experimental framework is available online 11https://github.com/rda-ela/SNN-Adversarial-Attacks to the community for reproducible research.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

2021-11-29
Setiawan, Dharma Yusuf, Naning Hertiana, Sofia, Negara, Ridha Muldina.  2021.  6LoWPAN Performance Analysis of IoT Software-Defined-Network-Based Using Mininet-Io. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :60–65.
Software Defined Network (SDN) is a new paradigm in network architecture. The basic concept of SDN itself is to separate the control plane and forwarding plane explicitly. In the last few years, SDN technology has become one of the exciting topics for researchers, the development of SDN which was carried out, one of which was implementing the Internet of Things (IoT) devices in the SDN network architecture model. Mininet-IoT is developing the Mininet network emulator by adding virtualized IoT devices, 6LoWPAN based on wireless Linux standards, and 802.15.4 wireless simulation drivers. Mininet-IoT expands the Mininet code class by adding or modifying functions in it. This research will discuss the performance of the 6LoWPAN device on the internet of things (IoT) network by applying the SDN paradigm. We use the Mininet-IoT emulator and the Open Network Operating System (ONOS) controller using the internet of things (IoT) IPv6 forwarding. Performance testing by comparing some of the topologies of the addition of host, switch, and cluster. The test results of the two scenarios tested can be concluded; the throughput value obtained has decreased compared to the value of back-traffic traffic. While the packet loss value obtained is on average above 15%. Jitter value, delay, throughput, and packet loss are still in the category of enough, good, and very good based on TIPHON and ITU-T standards.
2022-01-10
Shoshina, Anastasiia V., Borzunov, Georgii I., Ivanova, Ekaterina Y..  2021.  Application of Bio-inspired Algorithms to the Cryptanalysis of Asymmetric Ciphers on the Basis of Composite Number. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2399–2403.
In some cases, the confidentiality of cryptographic algorithms used in digital communication is related to computational complexity mathematical problems, such as calculating the discrete logarithm, the knapsack problem, decomposing a composite number into prime divisors etc. This article describes the application of insolvability of factorization of a large composite number, and reviews previous work integer factorization using either the deterministic or the bio-inspired algorithms. This article focuses on the possibility of using bio-inspired methods to solve the problem of cryptanalysis of asymmetric encryption algorithms, which ones based on factorization of composite numbers. The purpose of this one is to reviewing previous work in integer factorization algorithms, developing a prototype of either the deterministic and the bio-inspired algorithm and the effectiveness of the developed algorithms and recommendations are made for future research paths.
2022-07-14
Sakk, Eric, Wang, Shuangbao Paul.  2021.  Code Structures for Quantum Encryption and Decryption. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :7—11.
The paradigm of quantum computation has led to the development of new algorithms as well variations on existing algorithms. In particular, novel cryptographic techniques based upon quantum computation are of great interest. Many classical encryption techniques naturally translate into the quantum paradigm because of their well-structured factorizations and the fact that they can be phased in the form of unitary operators. In this work, we demonstrate a quantum approach to data encryption and decryption based upon the McEliece cryptosystem using Reed-Muller codes. This example is of particular interest given that post-quantum analyses have highlighted this system as being robust against quantum attacks. Finally, in anticipation of quantum computation operating over binary fields, we discuss alternative operator factorizations for the proposed cryptosystem.
2022-07-29
Suo, Siliang, Huang, Kaitian, Kuang, Xiaoyun, Cao, Yang, Chen, Liming, Tao, Wenwei.  2021.  Communication Security Design of Distribution Automation System with Multiple Protection. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :750—754.
At present, the security protection of distribution automation system is faced with complex and diverse operating environment, and the main use of public network may bring greater security risks, there are still some deficiencies. According to the actual situation of distribution automation of China Southern Power Grid, this paper designs multiple protection technology, carries out encryption distribution terminal research, and realizes end-to-end longitudinal security protection of distribution automation system, which is effectively improving the anti-attack ability of distribution terminal.