Biblio
Filters: First Letter Of Last Name is S [Clear All Filters]
Attribute-Based Data Security with Obfuscated Access Policy for Smart Grid Applications. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :503–506.
.
2020. Smart grid employs intelligent transmission and distribution networks for effective and reliable delivery of electricity. It uses fine-grained electrical measurements to attain optimized reliability and stability by sharing these measurements among different entities of energy management systems of the grid. There are many stakeholders like users, phasor measurement units (PMU), and other entities, with changing requirements involved in the sharing of the data. Therefore, data security plays a vital role in the correct functioning of a power grid network. In this paper, we propose an attribute-based encryption (ABE) for secure data sharing in Smart Grid architectures as ABE enables efficient and secure access control. Also, the access policy is obfuscated to preserve privacy. We use Linear Secret Sharing (LSS) Scheme for supporting any monotone access structures, thereby enhancing the expressiveness of access policies. Finally, we also analyze the security, access policy privacy and collusion resistance properties along with efficiency analysis of our cryptosystem.
Attribution in Scale and Space. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :9677–9686.
.
2020. We study the attribution problem for deep networks applied to perception tasks. For vision tasks, attribution techniques attribute the prediction of a network to the pixels of the input image. We propose a new technique called Blur Integrated Gradients (Blur IG). This technique has several advantages over other methods. First, it can tell at what scale a network recognizes an object. It produces scores in the scale/frequency dimension, that we find captures interesting phenomena. Second, it satisfies the scale-space axioms, which imply that it employs perturbations that are free of artifact. We therefore produce explanations that are cleaner and consistent with the operation of deep networks. Third, it eliminates the need for baseline parameter for Integrated Gradients for perception tasks. This is desirable because the choice of baseline has a significant effect on the explanations. We compare the proposed technique against previous techniques and demonstrate application on three tasks: ImageNet object recognition, Diabetic Retinopathy prediction, and AudioSet audio event identification. Code and examples are at https://github.com/PAIR-code/saliency.
Automatically Generating Malware Summary Using Semantic Behavior Graphs (SBGs). 2020 Information Communication Technologies Conference (ICTC). :282–291.
.
2020. In malware behavior analysis, there are limitations in the analysis method of control flow and data flow. Researchers analyzed data flow by dynamic taint analysis tools, however, it cost a lot. In this paper, we proposed a method of generating malware summary based on semantic behavior graphs (SBGs, Semantic Behavior Graphs) to address this issue. In this paper, we considered various situation where behaviors be capable of being associated, thus an algorithm of generating semantic behavior graphs was given firstly. Semantic behavior graphs are composed of behavior nodes and associated data edges. Then, we extracted behaviors and logical relationships between behaviors from semantic behavior graphs, and finally generated a summary of malware behaviors with true intension. Experimental results showed that our approach can effectively identify and describe malicious behaviors and generate accurate behavior summary.
BISTLock: Efficient IP Piracy Protection using BIST. 2020 IEEE International Test Conference (ITC). :1—5.
.
2020. The globalization of IC manufacturing has increased the likelihood for IP providers to suffer financial and reputational loss from IP piracy. Logic locking prevents IP piracy by corrupting the functionality of an IP unless a correct secret key is inserted. However, existing logic-locking techniques can impose significant area overhead and performance impact (delay and power) on designs. In this work, we propose BISTLock, a logic-locking technique that utilizes built-in self-test (BIST) to isolate functional inputs when the circuit is locked. We also propose a set of security metrics and use the proposed metrics to quantify BISTLock's security strength for an open-source AES core. Our experimental results demonstrate that BISTLock is easy to implement and introduces an average of 0.74% area and no power or delay overhead across the set of benchmarks used for evaluation.
Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
.
2020. IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
Blockchain for Increased Cyber-Resiliency of Industrial Edge Environments. 2020 IEEE International Conference on Smart Computing (SMARTCOMP). :1–8.
.
2020. The advent of the Internet of Things (IoT) together with its spread in industrial environments have changed pro-duction lines, by dramatically fostering the dynamicity of data sharing and the openness of machines. However, the increased flexibility and openness of the industrial environment (also pushed by the adoption of Edge devices) must not negatively affect the security and safety of production lines and its opera-tional processes. In fact, opening industrial environments towards the Internet and increasing interactions among machines may represent a security threat, if not properly managed. The paper originally proposes the adoption of the Blockchain to securely store in distributed ledgers topology information and access rules, with the primary goal of maximizing the cyber-resiliency of industrial networks. In this manner, it is possible to store and query topology information and security access rules in a completely distributed manner, ensuring data availability even in case a centralized control point is temporarily down or the network partitioned. Moreover, Blockchain consensus algorithms can be used to foster a participative validation of topology information, to reciprocally ensure the identity of interacting machines/nodes, to securely distribute topology information and commands in a privacy-preserving manner, and to trace any past modification in a non-repudiable manner.
Blockchain Technology and Neural Networks for the Internet of Medical Things. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :508–513.
.
2020. In today's technological climate, users require fast automation and digitization of results for large amounts of data at record speeds. Especially in the field of medicine, where each patient is often asked to undergo many different examinations within one diagnosis or treatment. Each examination can help in the diagnosis or prediction of further disease progression. Furthermore, all produced data from these examinations must be stored somewhere and available to various medical practitioners for analysis who may be in geographically diverse locations. The current medical climate leans towards remote patient monitoring and AI-assisted diagnosis. To make this possible, medical data should ideally be secured and made accessible to many medical practitioners, which makes them prone to malicious entities. Medical information has inherent value to malicious entities due to its privacy-sensitive nature in a variety of ways. Furthermore, if access to data is distributively made available to AI algorithms (particularly neural networks) for further analysis/diagnosis, the danger to the data may increase (e.g., model poisoning with fake data introduction). In this paper, we propose a federated learning approach that uses decentralized learning with blockchain-based security and a proposition that accompanies that training intelligent systems using distributed and locally-stored data for the use of all patients. Our work in progress hopes to contribute to the latest trend of the Internet of Medical Things security and privacy.
Blockchain-Anchored Failure Responsibility Management in Disaggregated Optical Networks. 2020 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.
.
2020. A novel framework based on blockchain is proposed to provide trusted SLA accounting. Extensions to SDN ONOS controller successfully assess controversial SLA degradations responsibilities upon failure events in a multi-vendor OpenROADM-based white box scenario.
Bringing Semantics to Support Ocean FAIR Data Services with Ontologies. 2020 IEEE International Conference on Services Computing (SCC). :30—37.
.
2020. With the increasing attention to ocean and the development of data-intensive sciences, a large amount of ocean data has been acquired by various observing platforms and sensors, which poses new challenges to data management and utilization. Typically, nowadays we target to move ocean data management toward the FAIR principles of being findable, accessible, interoperable, and reusable. However, the data produced and managed by different organizations with wide diversity, various structures and increasing volume make it hard to be FAIR, and one of the most critical reason is the lack of unified data representation and publication methods. In this paper, we propose novel techniques to try to solve the problem by introducing semantics with ontologies. Specifically, we first propose a unified semantic model named OEDO to represent ocean data by defining the concepts of ocean observing field, specifying the relations between the concepts, and describing the properties with ocean metadata. Then, we further optimize the state-of-the-art quick service query list (QSQL) data structure, by extending the domain concepts with WordNet to improve data discovery. Moreover, based on the OEDO model and the optimized QSQL, we propose an ocean data service publishing method called DOLP to improve data discovery and data access. Finally, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our proposals.
Building Multiclass Classification Baselines for Anomaly-based Network Intrusion Detection Systems. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :759—760.
.
2020. This paper showcases multiclass classification baselines using different machine learning algorithms and neural networks for distinguishing legitimate network traffic from direct and obfuscated network intrusions. This research derives its baselines from Advanced Security Network Metrics & Tunneling Obfuscations dataset. The dataset captured legitimate and obfuscated malicious TCP communications on selected vulnerable network services. The multiclass classification NIDS is able to distinguish obfuscated and direct network intrusion with up to 95% accuracy.
CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
.
2020. Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.
Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
.
2020. Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
.
2020. Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
Classification of Hyperspectral Images using Edge Preserving Filter and Nonlinear Support Vector Machine (SVM). 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). :1050–1054.
.
2020. Hyperspectral image is acquired with a special sensor in which the information is collected continuously. This sensor will provide abundant data from the scene captured. The high voluminous data in this image give rise to the extraction of materials and other valuable items in it. This paper proposes a methodology to extract rich information from the hyperspectral images. As the information collected in a contiguous manner, there is a need to extract spectral bands that are uncorrelated. A factor analysis based dimensionality reduction technique is employed to extract the spectral bands and a weight least square filter is used to get the spatial information from the data. Due to the preservation of edge property in the spatial filter, much information is extracted during the feature extraction phase. Finally, a nonlinear SVM is applied to assign a class label to the pixels in the image. The research work is tested on the standard dataset Indian Pines. The performance of the proposed method on this dataset is assessed through various accuracy measures. These accuracies are 96%, 92.6%, and 95.4%. over the other methods. This methodology can be applied to forestry applications to extract the various metrics in the real world.
CleaNN: Accelerated Trojan Shield for Embedded Neural Networks. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
.
2020. We propose Cleann, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications. A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger. What differentiates Cleann from the prior work is its lightweight methodology which recovers the ground-truth class of Trojan samples without the need for labeled data, model retraining, or prior assumptions on the trigger or the attack. We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers. Cleann is devised based on algorithm/hardware co-design and is equipped with specialized hardware to enable efficient real-time execution on resource-constrained embedded platforms. Proof of concept evaluations on Cleann for the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate its competitive advantage in terms of attack resiliency and execution overhead.
Cloud Agent-Based Encryption Mechanism (CAEM): A Security Framework Model for Improving Adoption, Implementation and Usage of Cloud Computing Technology. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :99–104.
.
2020. Fast Growth of (ICT) Information and Communication Technology results to Innovation of Cloud Computing and is considered as a key driver for technological innovations, as an IT innovations, cloud computing had added a new dimension to that importance by increasing usage to technology that motivates economic development at the national and global levels. Continues need of higher storage space (applications, files, videos, music and others) are some of the reasons for adoption and implementation, Users and Enterprises are gradually changing the way and manner in which Data and Information are been stored. Storing/Retrieving Data and Information traditionally using Standalone Computers are no longer sustainable due to high cost of Peripheral Devices, This further recommends organizational innovative adoption with regards to approaches on how to effectively reduced cost in businesses. Cloud Computing provides a lot of prospects to users/organizations; it also exposes security concerns which leads to low adoption, implementation and usage. Therefore, the study will examine standard ways of improving cloud computing adoption, implementation and usage by proposing and developing a security model using a design methodology that will ensure a secured Cloud Computing and also identify areas where future regularization could be operational.
Combinatorial Code Classification Amp; Vulnerability Rating. 2020 Second International Conference on Transdisciplinary AI (TransAI). :80–83.
.
2020. Empirical analysis of source code of Android Fluoride Bluetooth stack demonstrates a novel approach of classification of source code and rating for vulnerability. A workflow that combines deep learning and combinatorial techniques with a straightforward random forest regression is presented. Two kinds of embedding are used: code2vec and LSTM, resulting in a distance matrix that is interpreted as a (combinatorial) graph whose vertices represent code components, functions and methods. Cluster Editing is then applied to partition the vertex set of the graph into subsets representing nearly complete subgraphs. Finally, the vectors representing the components are used as features to model the components for vulnerability risk.
A Comprehensive Approach for DDoS Attack Detection in Smart Home Network Using Shortest Path Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :392—395.
.
2020. A Distributed Denial of Service (DDoS) attack is an attack that compromised the bandwidth of the whole network by choking down all the available network resources which are publically available, thus makes access to that resource unavailable. The DDoS attack is more vulnerable than a normal DoS attack because here the sources of attack origin are more than one, so users cannot even estimate how to detect and where to take actions so that attacks can be dissolved. This paper proposed a unique approach for DDoS detection using the shortest path algorithm. This Paper suggests that the remedy that must be taken in order to counter-affect the DDoS attack in a smart home network.
Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
.
2020. The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
Congestion Management of the German Transmission Grid through Sector Coupling: A Modeling Approach. 2020 55th International Universities Power Engineering Conference (UPEC). :1–6.
.
2020. The progressive expansion of renewable energies, especially wind power plants being promoted in Germany as part of the energy transition, places new demands on the transmission grid. As an alternative to grid expansion, sector coupling of the gas and electricity sector through Power-to-Gas (PtG) technology is seen as a great opportunity to make the energy transmission more flexible and reliable in the future as well as make use of already existing gas infrastructure. In this paper, PtG plants are dimensioned and placed in a model of the German transmission grid. Time series based load flow calculations are performed allowing conclusions about the line loading for the exemplary year 2016.
Context-Based Forwarding for Mobile ICNs. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
.
2020. Over the last couple of decades, mobile ad-hoc networks (MANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed, Information-Centric Networks (ICN), whose focus is the delivery of Content based on names. This article aims to use ICN concepts towards the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet Names and Data, and node's neighborhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy presents a clear improvement regarding the Data resolution, while maintaining network overhead at a constant.
A Context-Policy-Based Approach to Access Control for Healthcare Data Protection. 2020 International Computer Symposium (ICS). :420–425.
.
2020. Fueled by the emergence of IoT-enabled medical sensors and big data analytics, nations all over the world are widely adopting digitalization of healthcare systems. This is certainly a positive trend for improving the entire spectrum of quality of care, but this convenience is also posing a huge challenge on the security of healthcare data. For ensuring privacy and protection of healthcare data, access control is regarded as one of the first-line-of-defense mechanisms. As none of the traditional enterprise access control models can completely cater to the need of the healthcare domain which includes a myriad of contexts, in this paper, we present a context-policy-based access control scheme. Our scheme relies on the eTRON cybersecurity architecture for tamper-resistance and cryptographic functions, and leverages a context-specific blend of classical discretionary and role-based access models for incorporation into legacy systems. Moreover, our scheme adheres to key recommendations of prominent statutory and technical guidelines including HIPAA and HL7. The protocols involved in the proposed access control system have been delineated, and a proof-of-concept implementation has been carried out - along with a comparison with other systems, which clearly suggests that our approach is more responsive to different contexts for protecting healthcare data.
Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
.
2020. Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
A Conversational Agent for Database Query: A Use Case for Thai People Map and Analytics Platform. 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). :1–6.
.
2020. Since 2018, Thai People Map and Analytics Platform (TPMAP) has been developed with the aims of supporting government officials and policy makers with integrated household and community data to analyze strategic plans, implement policies and decisions to alleviate poverty. However, to acquire complex information from the platform, non-technical users with no database background have to ask a programmer or a data scientist to query data for them. Such a process is time-consuming and might result in inaccurate information retrieved due to miscommunication between non-technical and technical users. In this paper, we have developed a Thai conversational agent on top of TPMAP to support self-service data analytics on complex queries. Users can simply use natural language to fetch information from our chatbot and the query results are presented to users in easy-to-use formats such as statistics and charts. The proposed conversational agent retrieves and transforms natural language queries into query representations with relevant entities, query intentions, and output formats of the query. We employ Rasa, an open-source conversational AI engine, for agent development. The results show that our system yields Fl-score of 0.9747 for intent classification and 0.7163 for entity extraction. The obtained intents and entities are then used for query target information from a graph database. Finally, our system achieves end-to-end performance with accuracies ranging from 57.5%-80.0%, depending on query message complexity. The generated answers are then returned to users through a messaging channel.
Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
.
2020. Cognitive radio is development of wireless communication and mobile computing. Spectrum is a limited source. The licensed spectrum is proposed to be used only by the spectrum owners. Cognitive radio is a new view of the recycle licensed spectrum in an unlicensed manner. The main condition of the cognitive radio network is sensing the spectrum hole. Cognitive radio can be detect unused spectrum. It shares this with no interference to the licensed spectrum. It can be a sense signals. It makes viable communication in the middle of multiple users through co-operation in a self-organized manner. The energy detector method is unseen signal detector because it reject the data of the signal.In this paper, has implemented Simulink Energy Detection of spectrum sensing cognitive radio in a MATLAB Simulink to Exploit spectrum holes and avoid damaging interference to licensed spectrum and unlicensed spectrum. The hidden primary user problem will happened because fading or shadowing. Ithappens when cognitive radio could not be detected by primer users because of its location. Cooperative sensing spectrum sensing is the best-proposed method to solve the hidden problem.