Biblio
As the number of data in various industries and government sectors is growing exponentially, the `7V' concept of big data aims to create a new value by indiscriminately collecting and analyzing information from various fields. At the same time as the ecosystem of the ICT industry arrives, big data utilization is treatened by the privacy attacks such as infringement due to the large amount of data. To manage and sustain the controllable privacy level, there need some recommended de-identification techniques. This paper exploits those de-identification processes and three types of commonly used privacy models. Furthermore, this paper presents use cases which can be adopted those kinds of technologies and future development directions.
Preserving medical data is of utmost importance to stake holders. There are not many laws in India about preservation, usability of patient records. When data is transmitted across the globe there are chances of data getting tampered intentionally or accidentally. Tampered data loses its authenticity for diagnostic purpose, research and various other reasons. This paper proposes an authenticity based ECDSA algorithm by signature verification to identify the tampering of medical image files and alerts by the rules of authenticity. The algorithm can be used by researchers, doctors or any other educated person in order to maintain the authenticity of the record. Presently it is applied on medical related image files like DICOM. However, it can support any other medical related image files and still preserve the authenticity.
The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.
It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.
In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.
Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.
This paper presents a new micro-architectural vulnerability on the power management units of modern computers which creates an electromagnetic-based side-channel. The key observations that enable us to discover this sidechannel are: 1) in an effort to manage and minimize power consumption, modern microprocessors have a number of possible operating modes (power states) in which various sub-systems of the processor are powered down, 2) for some of the transitions between power states, the processor also changes the operating mode of the voltage regulator module (VRM) that supplies power to the affected sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent on its operating mode. As a result, these state-dependent EM emanations create a side-channel which can potentially reveal sensitive information about the current state of the processor and, more importantly, the programs currently being executed. To demonstrate the feasibility of exploiting this vulnerability, we create a covert channel by utilizing the changes in the processor's power states. We show how such a covert channel can be leveraged to exfiltrate sensitive information from a secured and completely isolated (air-gapped) laptop system by placing a compact, inexpensive receiver in proximity to that system. To further show the severity of this attack, we also demonstrate how such a covert channel can be established when the target and the receiver are several meters away from each other, including scenarios where the receiver and the target are separated by a wall. Compared to the state-of-the-art, the proposed covert channel has \textbackslashtextgreater3x higher bit-rate. Finally, to demonstrate that this new vulnerability is not limited to being used as a covert channel, we demonstrate how it can be used for attacks such as keystroke logging.
A metric and structure of computing 2020 is proposed in the form of Top 12 Technology Trends, which will influence on investment in science, education and industry in developing countries. The primary social and technological problem of the protection of society and critical facilities through the creation of Global Intelligent Cyber Security is formulated. The axioms of the constructive formation of developing countries on the basis of the adoption of moral relations are formulated. Models, methods and algorithms of cyber-social computing are proposed that are focused on processing big data, searching for keywords and test fragments. New characteristic equations of similarity - differences between the processes and phenomena are synthesized for the exact information retrieval by keywords in cyber-physical space. A computing model of the development of the Universe is formulated, where the binary interactions of entities and forms are harmonic functions of the phase state. A structure of interactive computing of the creative process based on a metric assessment of the development status with world achievements is proposed.
Over the past decade, distributed CSMA, which forms the basis for WiFi, has been deployed ubiquitously to provide seamless and high-speed mobile internet access. However, distributed CSMA might not be ideal for future IoT/M2M applications, where the density of connected devices/sensors/controllers is expected to be orders of magnitude higher than that in present wireless networks. In such high-density networks, the overhead associated with completely distributed MAC protocols will become a bottleneck. Moreover, IoT communications are likely to have strict QoS requirements, for which the `best-effort' scheduling by present WiFi networks may be unsuitable. This calls for a clean-slate redesign of the wireless MAC taking into account the requirements for future IoT/M2M networks. In this paper, we propose a reservation-based (for minimal overhead) wireless MAC designed specifically with IoT/M2M applications in mind.
Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.



