Wu, Zhaoming, Aggarwal, Charu C., Sun, Jimeng.
2016.
The Troll-Trust Model for Ranking in Signed Networks. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :447–456.
Signed social networks have become increasingly important in recent years because of the ability to model trust-based relationships in review sites like Slashdot, Epinions, and Wikipedia. As a result, many traditional network mining problems have been re-visited in the context of networks in which signs are associated with the links. Examples of such problems include community detection, link prediction, and low rank approximation. In this paper, we will examine the problem of ranking nodes in signed networks. In particular, we will design a ranking model, which has a clear physical interpretation in terms of the sign of the edges in the network. Specifically, we propose the Troll-Trust model that models the probability of trustworthiness of individual data sources as an interpretation for the underlying ranking values. We will show the advantages of this approach over a variety of baselines.
Wu, Zhengze, Zhang, Xiaohong, Zhong, Xiaoyong.
2019.
Generalized Chaos Synchronization Circuit Simulation and Asymmetric Image Encryption. IEEE Access. 7:37989–38008.
Generalized chaos systems have more complex dynamic behavior than conventional chaos systems. If a generalized response system can be synchronized with a conventional drive system, the flexible control parameters and unpredictable synchronization state will increase significantly. The study first constructs a four-dimensional nonlinear dynamic equation with quadratic variables as a drive system. The numerical simulation and analyses of the Lyapunov exponent show that it is also a chaotic system. Based on the generalized chaos synchronization (GCS) theory, a four-dimensional diffeomorphism function is designed, and the corresponding GCS response system is generated. Simultaneously, the structural and synchronous circuits of information interaction and control are constructed with Multisim™ software, with the circuit simulation resulting in a good agreement with the numerical calculations. In order to verify the practical effect of generalized synchronization, an RGB digital image secure communication scheme is proposed. We confuse a 24-bit true color image with the designed GCS system, extend the original image to 48-bits, analyze the scheme security from keyspace, key sensitivity and non-symmetric identity authentication, classical types of attacks, and statistical average from the histogram, image correlation. The research results show that this GCS system is simple and feasible, and the encryption algorithm is closely related to the confidential information, which can resist the differential attack. The scheme is suitable to be applied in network images or other multimedia safe communications.
Wu, Zhijun, Xu, Enzhong, Liu, Liang, Yue, Meng.
2019.
CHTDS: A CP-ABE Access Control Scheme Based on Hash Table and Data Segmentation in NDN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :843—848.
For future Internet, information-centric networking (ICN) is considered a potential solution to many of its current problems, such as content distribution, mobility, and security. Named Data Networking (NDN) is a more popular ICN project. However, concern regarding the protection of user data persists. Information caching in NDN decouples content and content publishers, which leads to content security threats due to lack of secure controls. Therefore, this paper presents a CP-ABE (ciphertext policy attribute based encryption) access control scheme based on hash table and data segmentation (CHTDS). Based on data segmentation, CHTDS uses a method of linearly splitting fixed data blocks, which effectively improves data management. CHTDS also introduces CP-ABE mechanism and hash table data structure to ensure secure access control and privilege revocation does not need to re-encrypt the published content. The analysis results show that CHTDS can effectively realize the security and fine-grained access control in the NDN environment, and reduce communication overhead for content access.
Wu, Zhijun, Cui, Weihang, Gao, Pan.
2021.
Filtration method of DDoS attacks based on time-frequency analysis. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :75–80.
Traditional DDoS attacks mainly send massive data packets through the attacking machine, consuming the network resources or server resources of the target server, making users unable to use server resources to achieve the purpose of denial of service. This type of attack is called a Flooding-based DDoS (FDDoS) attack. It has the characteristics of large traffic and suddenness. However, Low-rate DDoS (LDDoS) attack is a new type of DDoS attack. LDDoS utilize the TCP congestion control mechanism and sends periodic pulses to attack, which can seriously reduce the TCP flow throughput of the attacked link. It has the characteristics of small traffic and strong concealment. Each of these two DDoS attack methods has its own hard-to-handle characteristics, so that there is currently no particularly effective method to prevent such attacks. This paper uses time-frequency analysis to classify and filter DDoS traffic. The proposed filtering method is designed as a system in the actual environment. Experimental results show that the designed filtering algorithm can resist not only FDDoS attacks, but also LDDoS attacks.
Wu, Zhiyong, Cao, Yanhua.
2022.
Analysis of “Tripartite and Bilateral” Space Deterrence Based on Signaling Game. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:2100–2104.
A “tripartite and bilateral” dynamic game model was constructed to study the impact of space deterrence on the challenger's military strategy in a military conflict. Based on the signal game theory, the payment matrices and optimal strategies of the sheltering side and challenging side were analyzed. In a theoretical framework, the indicators of the effectiveness of the challenger's response to space deterrence and the influencing factors of the sheltering's space deterrence were examined. The feasibility and effective means for the challenger to respond to the space deterrent in a “tripartite and bilateral” military conflict were concluded.
ISSN: 2693-289X
Wu, Zuowei, Li, Taoshen.
2017.
An Improved Fully Homomorphic Encryption Scheme Under the Cloud Environment. Proceedings of the 12th Chinese Conference on Computer Supported Cooperative Work and Social Computing. :251–252.
In order to improve the efficiency of the existing homomorphic encryption method, based on the DGHV scheme, an improved fully homomorphic scheme over the integer is proposed. Under the premise of ensuring data owner and user data security, the scheme supports the addition and multiplication operations of ciphertext, and ensures faster execution efficiency and meets the security requirements of cloud computing. Security analysis shows that our scheme is safe. Performance assessment demonstrates that our scheme can more efficiently implement data than DGHV scheme.
Wulf, Cornelia, Willig, Michael, Göhringer, Diana.
2021.
A Survey on Hypervisor-based Virtualization of Embedded Reconfigurable Systems. 2021 31st International Conference on Field-Programmable Logic and Applications (FPL). :249–256.
The increase of size, capabilities, and speed of FPGAs enables the shared usage of reconfigurable resources by multiple applications and even operating systems. While research on FPGA virtualization in HPC-datacenters and cloud is already well advanced, it is a rather new concept for embedded systems. The necessity for FPGA virtualization of embedded systems results from the trend to integrate multiple environments into the same hardware platform. As multiple guest operating systems with different requirements, e.g., regarding real-time, security, safety, or reliability share the same resources, the focus of research lies on isolation under the constraint of having minimal impact on the overall system. Drivers for this development are, e.g., computation intensive AI-based applications in the automotive or medical field, embedded 5G edge computing systems, or the consolidation of electronic control units (ECUs) on a centralized MPSoC with the goal to increase reliability by reducing complexity. This survey outlines key concepts of hypervisor-based virtualization of embedded reconfigurable systems. Hypervisor approaches are compared and classified into FPGA-based hypervisors, MPSoC-based hypervisors and hypervisors for distributed embedded reconfigurable systems. Strong points and limitations are pointed out and future trends for virtualization of embedded reconfigurable systems are identified.
Wurzenberger, Markus, Skopik, Florian, Fiedler, Roman, Kastner, Wolfgang.
2016.
Discovering Insider Threats from Log Data with High-Performance Bioinformatics Tools. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :109–112.
Since the number of cyber attacks by insider threats and the damage caused by them has been increasing over the last years, organizations are in need for specific security solutions to counter these threats. To limit the damage caused by insider threats, the timely detection of erratic system behavior and malicious activities is of primary importance. We observed a major paradigm shift towards anomaly-focused detection mechanisms, which try to establish a baseline of system behavior – based on system logging data – and report any deviations from this baseline. While these approaches are promising, they usually have to cope with scalability issues. As the amount of log data generated during IT operations is exponentially growing, high-performance security solutions are required that can handle this huge amount of data in real time. In this paper, we demonstrate how high-performance bioinformatics tools can be leveraged to tackle this issue, and we demonstrate their application to log data for outlier detection, to timely detect anomalous system behavior that points to insider attacks.
Wüstrich, Lars, Schröder, Lukas, Pahl, Marc-Oliver.
2021.
Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
Wylde, Allison.
2021.
Zero trust: Never trust, always verify. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—4.
This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.
Wynn, Nathan, Johnsen, Kyle, Gonzalez, Nick.
2021.
Deepfake Portraits in Augmented Reality for Museum Exhibits. 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). :513—514.
In a collaboration with the Georgia Peanut Commission’s Education Center and museum in Georgia, USA, we developed an augmented reality app to guide visitors through the museum and offer immersive educational information about the artifacts, exhibits, and artwork displayed therein. Notably, our augmented reality system applies the First Order Motion Model for Image Animation to several portraits of individuals influential to the Georgia peanut industry to provide immersive animated narration and monologue regarding their contributions to the peanut industry. [4]