Biblio

Found 2823 results

Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
Z
Tang, R., Yang, Z., Li, Z., Meng, W., Wang, H., Li, Q., Sun, Y., Pei, D., Wei, T., Xu, Y. et al..  2020.  ZeroWall: Detecting Zero-Day Web Attacks through Encoder-Decoder Recurrent Neural Networks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2479—2488.

Zero-day Web attacks are arguably the most serious threats to Web security, but are very challenging to detect because they are not seen or known previously and thus cannot be detected by widely-deployed signature-based Web Application Firewalls (WAFs). This paper proposes ZeroWall, an unsupervised approach, which works with an existing WAF in pipeline, to effectively detecting zero-day Web attacks. Using historical Web requests allowed by an existing signature-based WAF, a vast majority of which are assumed to be benign, ZeroWall trains a self-translation machine using an encoder-decoder recurrent neural network to capture the syntax and semantic patterns of benign requests. In real-time detection, a zero-day attack request (which the WAF fails to detect), not understood well by self-translation machine, cannot be translated back to its original request by the machine, thus is declared as an attack. In our evaluation using 8 real-world traces of 1.4 billion Web requests, ZeroWall successfully detects real zero-day attacks missed by existing WAFs and achieves high F1-scores over 0.98, which significantly outperforms all baseline approaches.

Pallaprolu, S. C., Sankineni, R., Thevar, M., Karabatis, G., Wang, J..  2017.  Zero-Day Attack Identification in Streaming Data Using Semantics and Spark. 2017 IEEE International Congress on Big Data (BigData Congress). :121–128.

Intrusion Detection Systems (IDS) have been in existence for many years now, but they fall short in efficiently detecting zero-day attacks. This paper presents an organic combination of Semantic Link Networks (SLN) and dynamic semantic graph generation for the on the fly discovery of zero-day attacks using the Spark Streaming platform for parallel detection. In addition, a minimum redundancy maximum relevance (MRMR) feature selection algorithm is deployed to determine the most discriminating features of the dataset. Compared to previous studies on zero-day attack identification, the described method yields better results due to the semantic learning and reasoning on top of the training data and due to the use of collaborative classification methods. We also verified the scalability of our method in a distributed environment.

Wylde, Allison.  2021.  Zero trust: Never trust, always verify. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—4.

This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.

Y
Zhang, Yiming, Fan, Yujie, Song, Wei, Hou, Shifu, Ye, Yanfang, Li, Xin, Zhao, Liang, Shi, Chuan, Wang, Jiabin, Xiong, Qi.  2019.  Your Style Your Identity: Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network. The World Wide Web Conference. :3448–3454.
Due to its anonymity, there has been a dramatic growth of underground drug markets hosted in the darknet (e.g., Dream Market and Valhalla). To combat drug trafficking (a.k.a. illicit drug trading) in the cyberspace, there is an urgent need for automatic analysis of participants in darknet markets. However, one of the key challenges is that drug traffickers (i.e., vendors) may maintain multiple accounts across different markets or within the same market. To address this issue, in this paper, we propose and develop an intelligent system named uStyle-uID leveraging both writing and photography styles for drug trafficker identification at the first attempt. At the core of uStyle-uID is an attributed heterogeneous information network (AHIN) which elegantly integrates both writing and photography styles along with the text and photo contents, as well as other supporting attributes (i.e., trafficker and drug information) and various kinds of relations. Built on the constructed AHIN, to efficiently measure the relatedness over nodes (i.e., traffickers) in the constructed AHIN, we propose a new network embedding model Vendor2Vec to learn the low-dimensional representations for the nodes in AHIN, which leverages complementary attribute information attached in the nodes to guide the meta-path based random walk for path instances sampling. After that, we devise a learning model named vIdentifier to classify if a given pair of traffickers are the same individual. Comprehensive experiments on the data collections from four different darknet markets are conducted to validate the effectiveness of uStyle-uID which integrates our proposed method in drug trafficker identification by comparisons with alternative approaches.
Zhao, Tianming, Wang, Yan, Liu, Jian, Chen, Yingying.  2018.  Your Heart Won'T Lie: PPG-based Continuous Authentication on Wrist-worn Wearable Devices. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :783–785.
This paper presents a photoplethysmography (PPG)-based continuous user authentication (CA) system, which especially leverages the PPG sensors in wrist-worn wearable devices to identify users. We explore the uniqueness of the human cardiac system captured by the PPG sensing technology. Existing CA systems require either the dedicated sensing hardware or specific gestures, whereas our system does not require any users' interactions but only the wearable device, which has already been pervasively equipped with PPG sensors. Notably, we design a robust motion artifacts (MA) removal method to mitigate the impact of MA from wrist movements. Additionally, we explore the characteristic fiducial features from PPG measurements to efficiently distinguish the human cardiac system. Furthermore, we develop a cardiac-based classifier for user identification using the Gradient Boosting Tree (GBT). Experiments with the prototype of the wrist-worn PPG sensing platform and 10 participants in different scenarios demonstrate that our system can effectively remove MA and achieve a high average authentication success rate over \$90%\$.
Xue, Minhui, Ballard, Cameron, Liu, Kelvin, Nemelka, Carson, Wu, Yanqiu, Ross, Keith, Qian, Haifeng.  2016.  You Can Yak but You Can'T Hide: Localizing Anonymous Social Network Users. Proceedings of the 2016 Internet Measurement Conference. :25–31.

The recent growth of anonymous social network services – such as 4chan, Whisper, and Yik Yak – has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.

Wang, Xiangwen, Peng, Peng, Wang, Chun, Wang, Gang.  2018.  You Are Your Photographs: Detecting Multiple Identities of Vendors in the Darknet Marketplaces. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :431-442.

Darknet markets are online services behind Tor where cybercriminals trade illegal goods and stolen datasets. In recent years, security analysts and law enforcement start to investigate the darknet markets to study the cybercriminal networks and predict future incidents. However, vendors in these markets often create multiple accounts ($\backslash$em i.e., Sybils), making it challenging to infer the relationships between cybercriminals and identify coordinated crimes. In this paper, we present a novel approach to link the multiple accounts of the same darknet vendors through photo analytics. The core idea is that darknet vendors often have to take their own product photos to prove the possession of the illegal goods, which can reveal their distinct photography styles. To fingerprint vendors, we construct a series deep neural networks to model the photography styles. We apply transfer learning to the model training, which allows us to accurately fingerprint vendors with a limited number of photos. We evaluate the system using real-world datasets from 3 large darknet markets (7,641 vendors and 197,682 product photos). A ground-truth evaluation shows that the system achieves an accuracy of 97.5%, outperforming existing stylometry-based methods in both accuracy and coverage. In addition, our system identifies previously unknown Sybil accounts within the same markets (23) and across different markets (715 pairs). Further case studies reveal new insights into the coordinated Sybil activities such as price manipulation, buyer scam, and product stocking and reselling.

Ye, Guixin, Tang, Zhanyong, Fang, Dingyi, Zhu, Zhanxing, Feng, Yansong, Xu, Pengfei, Chen, Xiaojiang, Wang, Zheng.  2018.  Yet Another Text Captcha Solver: A Generative Adversarial Network Based Approach. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :332–348.
Despite several attacks have been proposed, text-based CAPTCHAs are still being widely used as a security mechanism. One of the reasons for the pervasive use of text captchas is that many of the prior attacks are scheme-specific and require a labor-intensive and time-consuming process to construct. This means that a change in the captcha security features like a noisier background can simply invalid an earlier attack. This paper presents a generic, yet effective text captcha solver based on the generative adversarial network. Unlike prior machine-learning-based approaches that need a large volume of manually-labeled real captchas to learn an effective solver, our approach requires significantly fewer real captchas but yields much better performance. This is achieved by first learning a captcha synthesizer to automatically generate synthetic captchas to learn a base solver, and then fine-tuning the base solver on a small set of real captchas using transfer learning. We evaluate our approach by applying it to 33 captcha schemes, including 11 schemes that are currently being used by 32 of the top-50 popular websites including Microsoft, Wikipedia, eBay and Google. Our approach is the most capable attack on text captchas seen to date. It outperforms four state-of-the-art text-captcha solvers by not only delivering a significant higher accuracy on all testing schemes, but also successfully attacking schemes where others have zero chance. We show that our approach is highly efficient as it can solve a captcha within 0.05 second using a desktop GPU. We demonstrate that our attack is generally applicable because it can bypass the advanced security features employed by most modern text captcha schemes. We hope the results of our work can encourage the community to revisit the design and practical use of text captchas.
X
Wang, An, Mohaisen, Aziz, Chen, Songqing.  2019.  XLF: A Cross-layer Framework to Secure the Internet of Things (IoT). 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1830–1839.
The burgeoning Internet of Things (IoT) has offered unprecedented opportunities for innovations and applications that are continuously changing our life. At the same time, the large amount of pervasive IoT applications have posed paramount threats to the user's security and privacy. While a lot of efforts have been dedicated to deal with such threats from the hardware, the software, and the applications, in this paper, we argue and envision that more effective and comprehensive protection for IoT systems can only be achieved via a cross-layer approach. As such, we present our initial design of XLF, a cross-layer framework towards this goal. XLF can secure the IoT systems not only from each individual layer of device, network, and service, but also through the information aggregation and correlation of different layers.
Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

Tao, J., Xiong, Y., Zhao, S., Xu, Y., Lin, J., Wu, R., Fan, C..  2020.  XAI-Driven Explainable Multi-view Game Cheating Detection. 2020 IEEE Conference on Games (CoG). :144–151.
Online gaming is one of the most successful applications having a large number of players interacting in an online persistent virtual world through the Internet. However, some cheating players gain improper advantages over normal players by using illegal automated plugins which has brought huge harm to game health and player enjoyment. Game industries have been devoting much efforts on cheating detection with multiview data sources and achieved great accuracy improvements by applying artificial intelligence (AI) techniques. However, generating explanations for cheating detection from multiple views still remains a challenging task. To respond to the different purposes of explainability in AI models from different audience profiles, we propose the EMGCD, the first explainable multi-view game cheating detection framework driven by explainable AI (XAI). It combines cheating explainers to cheating classifiers from different views to generate individual, local and global explanations which contributes to the evidence generation, reason generation, model debugging and model compression. The EMGCD has been implemented and deployed in multiple game productions in NetEase Games, achieving remarkable and trustworthy performance. Our framework can also easily generalize to other types of related tasks in online games, such as explainable recommender systems, explainable churn prediction, etc.
Schürmann, D., Zengen, G. V., Priedigkeit, M., Wolf, L..  2017.  \#x003BC;DTNSec: A Security Layer for Disruption-Tolerant Networks on Microcontrollers. 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). :1–7.

We introduce $μ$DTNSec, the first fully-implemented security layer for Delay/Disruption-Tolerant Networks (DTN) on microcontrollers. It provides protection against eavesdropping and Man-in-the-Middle attacks that are especially easy in these networks. Following the Store-Carry-Forward principle of DTNs, an attacker can simply place itself on the route between source and destination. Our design consists of asymmetric encryption and signatures with Elliptic Curve Cryptography and hardware-backed symmetric encryption with the Advanced Encryption Standard. $μ$DTNSec has been fully implemented as an extension to $μ$DTN on Contiki OS and is based on the Bundle Protocol specification. Our performance evaluation shows that the choice of the curve (secp128r1, secp192r1, secp256r1) dominates the influence of the payload size. We also provide energy measurements for all operations to show the feasibility of our security layer on energy-constrained devices.

W
Wang, Chen, Liu, Jian, Guo, Xiaonan, Wang, Yan, Chen, Yingying.  2019.  WristSpy: Snooping Passcodes in Mobile Payment Using Wrist-worn Wearables. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2071–2079.
Mobile payment has drawn considerable attention due to its convenience of paying via personal mobile devices at anytime and anywhere, and passcodes (i.e., PINs or patterns) are the first choice of most consumers to authorize the payment. This paper demonstrates a serious security breach and aims to raise the awareness of the public that the passcodes for authorizing transactions in mobile payments can be leaked by exploiting the embedded sensors in wearable devices (e.g., smartwatches). We present a passcode inference system, WristSpy, which examines to what extent the user's PIN/pattern during the mobile payment could be revealed from a single wrist-worn wearable device under different passcode input scenarios involving either two hands or a single hand. In particular, WristSpy has the capability to accurately reconstruct fine-grained hand movement trajectories and infer PINs/patterns when mobile and wearable devices are on two hands through building a Euclidean distance-based model and developing a training-free parallel PIN/pattern inference algorithm. When both devices are on the same single hand, a highly challenging case, WristSpy extracts multi-dimensional features by capturing the dynamics of minute hand vibrations and performs machine-learning based classification to identify PIN entries. Extensive experiments with 15 volunteers and 1600 passcode inputs demonstrate that an adversary is able to recover a user's PIN/pattern with up to 92% success rate within 5 tries under various input scenarios.
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
Chen, Yenan, Li, Linsen, Zhu, Zhaoqian, Wu, Yue.  2022.  Work-in-Progress: Reliability Evaluation of Power SCADA System with Three-Layer IDS. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :1–2.
The SCADA (Supervisory Control And Data Acquisition) has become ubiquitous in industrial control systems. However, it may be exposed to cyber attack threats when it accesses the Internet. We propose a three-layer IDS (Intrusion Detection System) model, which integrates three main functions: access control, flow detection and password authentication. We use the reliability test system IEEE RTS-79 to evaluate the reliability. The experimental results provide insights into the establishment of the power SCADA system reliability enhancement strategies.
ISSN: 2643-1726
Wu, Yuhao, Wang, Yujie, Zhai, Shixuan, Li, Zihan, Li, Ao, Wang, Jinwen, Zhang, Ning.  2022.  Work-in-Progress: Measuring Security Protection in Real-time Embedded Firmware. 2022 IEEE Real-Time Systems Symposium (RTSS). :495–498.
The proliferation of real-time cyber-physical systems (CPS) is making profound changes to our daily life. Many real-time CPSs are security and safety-critical because of their continuous interactions with the physical world. While the general perception is that the security protection mechanism deployment is often absent in real-time embedded systems, there is no existing empirical study that measures the adoption of these mechanisms in the ecosystem. To bridge this gap, we conduct a measurement study for real-time embedded firmware from both a security perspective and a real-time perspective. To begin with, we collected more than 16 terabytes of embedded firmware and sampled 1,000 of them for the study. Then, we analyzed the adoption of security protection mechanisms and their potential impacts on the timeliness of real-time embedded systems. Besides, we measured the scheduling algorithms supported by real-time embedded systems since they are also security-critical.
ISSN: 2576-3172
Reyes, Irwin, Wijesekera, Primal, Reardon, Joel, Elazari, Amit, Razaghpanah, Abbas, Vallina-Rodriguez, Narseo, Egelman, Serge.  2018.  “Won’t Somebody Think of the Children?” Examining COPPA Compliance at Scale Proceedings on Privacy Enhancing Technologies. 2018:63-83.

We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps’ compliance with the Children’s Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children’s apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of thirdparty SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children’s apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.

Meng, Yan, Wang, Zichang, Zhang, Wei, Wu, Peilin, Zhu, Haojin, Liang, Xiaohui, Liu, Yao.  2018.  WiVo: Enhancing the Security of Voice Control System via Wireless Signal in IoT Environment. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :81–90.
With the prevalent of smart devices and home automations, voice command has become a popular User Interface (UI) channel in the IoT environment. Although Voice Control System (VCS) has the advantages of great convenience, it is extremely vulnerable to the spoofing attack (e.g., replay attack, hidden/inaudible command attack) due to its broadcast nature. In this study, we present WiVo, a device-free voice liveness detection system based on the prevalent wireless signals generated by IoT devices without any additional devices or sensors carried by the users. The basic motivation of WiVo is to distinguish the authentic voice command from a spoofed one via its corresponding mouth motions, which can be captured and recognized by wireless signals. To achieve this goal, WiVo builds a theoretical model to characterize the correlation between wireless signal dynamics and the user's voice syllables. WiVo extracts the unique features from both voice and wireless signals, and then calculates the consistency between these different types of signals in order to determine whether the voice command is generated by the authentic user of VCS or an adversary. To evaluate the effectiveness of WiVo, we build a testbed based on Samsung SmartThings framework and include WiVo as a new application, which is expected to significantly enhance the security of the existing VCS. We have evaluated WiVo with 6 participants and different voice commands. Experimental evaluation results demonstrate that WiVo achieves the overall 99% detection rate with 1% false accept rate and has a low latency.
Ammar, M., Washha, M., Crispo, B..  2018.  WISE: Lightweight Intelligent Swarm Attestation Scheme for IoT (The Verifier’s Perspective). 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
The growing pervasiveness of Internet of Things (IoT) expands the attack surface by connecting more and more attractive attack targets, i.e. embedded devices, to the Internet. One key component in securing these devices is software integrity checking, which typically attained with Remote Attestation (RA). RA is realized as an interactive protocol, whereby a trusted party, verifier, verifies the software integrity of a potentially compromised remote device, prover. In the vast majority of IoT applications, smart devices operate in swarms, thus triggering the need for efficient swarm attestation schemes.In this paper, we present WISE, the first intelligent swarm attestation protocol that aims to minimize the communication overhead while preserving an adequate level of security. WISE depends on a resource-efficient smart broadcast authentication scheme where devices are organized in fine-grained multi-clusters, and whenever needed, the most likely compromised devices are attested. The candidate devices are selected intelligently taking into account the attestation history and the diverse characteristics (and constraints) of each device in the swarm. We show that WISE is very suitable for resource-constrained embedded devices, highly efficient and scalable in heterogenous IoT networks, and offers an adjustable level of security.
Wen-Zhan Song, Debraj De, Song Tan, Sajal Das, Lang Tong.  2012.  A Wireless Smart Grid Testbed In Lab. Special Issue on Recent Advances in Wireless Technologies for Smart Grid, IEEE Wireless Communications Magazine. 19
Li, Bo, Ma, Yehan, Westenbroek, Tyler, Wu, Chengjie, Gonzalez, Humberto, Lu, Chenyang.  2016.  Wireless Routing and Control: A Cyber-physical Case Study. Proceedings of the 7th International Conference on Cyber-Physical Systems. :32:1–32:10.

Wireless sensor-actuator networks (WSANs) are being adopted in process industries because of their advantages in lowering deployment and maintenance costs. While there has been significant theoretical advancement in networked control design, only limited empirical results that combine control design with realistic WSAN standards exist. This paper presents a cyber-physical case study on a wireless process control system that integrates state-of-the-art network control design and a WSAN based on the WirelessHART standard. The case study systematically explores the interactions between wireless routing and control design in the process control plant. The network supports alternative routing strategies, including single-path source routing and multi-path graph routing. To mitigate the effect of data loss in the WSAN, the control design integrates an observer based on an Extended Kalman Filter with a model predictive controller and an actuator buffer of recent control inputs. We observe that sensing and actuation can have different levels of resilience to packet loss under this network control design. We then propose a flexible routing approach where the routing strategy for sensing and actuation can be configured separately. Finally, we show that an asymmetric routing configuration with different routing strategies for sensing and actuation can effectively improve control performance under significant packet loss. Our results highlight the importance of co-joining the design of wireless network protocols and control in wireless control systems.

Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
Welk, A., Zielinska, O., Tembe, R., Xe, G., Hong, K. W., Murphy-Hill, E., Mayhorn, C. B..  In Press.  Will the “Phisher-men” Reel you in? Assessing Individual Differences in a Phishing Detection Task International Journal of Cyber Behavior, Psychology, and Learning. .

Phishing is an act of technology-based deception that targets individuals to obtain information. To minimize the number of phishing attacks, factors that influence the ability to identify phishing attempts must be examined. The present study aimed to determine how individual differences relate to performance on a phishing task. Undergraduate students completed a questionnaire designed to assess impulsivity, trust, personality characteristics, and Internet/security habits. Participants performed an email task where they had to discriminate between legitimate emails and phishing attempts. Researchers assessed performance in terms of correctly identifying all email types (overall accuracy) as well as accuracy in identifying phishing emails (phishing accuracy). Results indicated that overall and phishing accuracy each possessed unique trust, personality, and impulsivity predictors, but shared one significant behavioral predictor. These results present distinct predictors of phishing susceptibility that should be incorporated in the development of anti-phishing technology and training.

Niedermayr, Rainer, Juergens, Elmar, Wagner, Stefan.  2016.  Will My Tests Tell Me if I Break This Code? Proceedings of the International Workshop on Continuous Software Evolution and Delivery. :23–29.

Automated tests play an important role in software evolution because they can rapidly detect faults introduced during changes. In practice, code-coverage metrics are often used as criteria to evaluate the effectiveness of test suites with focus on regression faults. However, code coverage only expresses which portion of a system has been executed by tests, but not how effective the tests actually are in detecting regression faults. Our goal was to evaluate the validity of code coverage as a measure for test effectiveness. To do so, we conducted an empirical study in which we applied an extreme mutation testing approach to analyze the tests of open-source projects written in Java. We assessed the ratio of pseudo-tested methods (those tested in a way such that faults would not be detected) to all covered methods and judged their impact on the software project. The results show that the ratio of pseudo-tested methods is acceptable for unit tests but not for system tests (that execute large portions of the whole system). Therefore, we conclude that the coverage metric is only a valid effectiveness indicator for unit tests.

Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.