Biblio

Filters: Author is Kantola, R.  [Clear All Filters]
2021-07-27
Kabir, H., Mohsin, M. H. Bin, Kantola, R..  2020.  Implementing a Security Policy Management for 5G Customer Edge Nodes. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—8.
The upcoming 5th generation (5G) mobile networks need to support ultra-reliable communication for business and life-critical applications. To do that 5G must offer higher degree of reliability than the current Internet, where networks are often subjected to Internet attacks, such as denial of service (DoS) and unwanted traffic. Besides improving the mitigation of Internet attacks, we propose that ultra-reliable mobile networks should only carry the expected user traffic to achieve a predictable level of reliability under malicious activity. To accomplish this, we introduce device-oriented communication security policies. Mobile networks have classically introduced a policy architecture that includes Policy and Charging Control (PCC) functions in LTE. However, in state of the art, this policy architecture is limited to QoS policies for end devices only. In this paper, we present experimental implementation of a Security Policy Management (SPM) system that accounts communication security interests of end devices. The paper also briefly presents the overall security architecture, where the policies set for devices or services in a network slice providing ultra-reliability, are enforced by a network edge node (via SPM) to only admit the expected traffic, by default treating the rest as unwanted traffic.
2018-02-02
Amir, K. C., Goulart, A., Kantola, R..  2016.  Keyword-driven security test automation of Customer Edge Switching (CES) architecture. 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM). :216–223.

Customer Edge Switching (CES) is an experimental Internet architecture that provides reliable and resilient multi-domain communications. It provides resilience against security threats because domains negotiate inbound and outbound policies before admitting new traffic. As CES and its signalling protocols are being prototyped, there is a need for independent testing of the CES architecture. Hence, our research goal is to develop an automated test framework that CES protocol designers and early adopters can use to improve the architecture. The test framework includes security, functional, and performance tests. Using the Robot Framework and STRIDE analysis, in this paper we present this automated security test framework. By evaluating sample test scenarios, we show that the Robot Framework and our CES test suite have provided productive discussions about this new architecture, in addition to serving as clear, easy-to-read documentation. Our research also confirms that test automation can be useful to improve new protocol architectures and validate their implementation.