Biblio

Filters: Keyword is Vulnerability and Resilience Prediction Models  [Clear All Filters]
2017-04-11
Akond Rahman, Priysha Pradhan, Asif Parthoϕ, Laurie Williams.  2017.  Predicting Android Application Security and Privacy Risk With Static Code Metrics. 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems.

Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are
writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper
is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications

[Anonymous].  2017.  Which Factors Influence Practitioners’ Usage of Build Automation Tools? 3rd International Workshop on Rapid Continuous Software Engineering (RCoSE) 2017.

Even though build automation tools help to reduce errors and rapid releases of software changes, use of build automation tools is not widespread amongst software practitioners. Software practitioners perceive build automation tools as complex, which can hinder the adoption of these tools. How well founded such perception is, can be determined by
systematic exploration of adoption factors that influence usage of build automation tools. The goal of this paper is to aid software practitioners in increasing their usage of build
automation tools by identifying the adoption factors that influence usage of these tools. We conducted a survey to empirically identify the adoption factors that influence usage of
build automation tools. We obtained survey responses from 268 software professionals who work at NestedApps, Red Hat, as well as contribute to open source software. We observe that adoption factors related to complexity do not have the strongest influence on usage of build automation tools. Instead, we observe compatibility-related adoption factors, such as adjustment with existing tools, and adjustment with practitioner’s existing workflow, to have influence on usage of build automation tools with greater importance. Findings from our paper suggest that usage of build automation tools might increase if: build automation tools fit well with practitioners’ existing workflow and tool usage; and usage of build automation tools are made more visible among practitioners’ peers.

2016-01-11
Roopak Venkatakrishnan, Mladen A. Vouk.  2016.  Using redundancy to detect security anomalies: towards IoT security attack detectors. Ubiquity. 2016:1-19.

Cyber-attacks and breaches are often detected too late to avoid damage. While “classical” reactive cyber defenses usually work only if we have some prior knowledge about the attack methods and “allowable” patterns, properly constructed redundancy-based anomaly detectors can be more robust and often able to detect even zero day attacks. They are a step toward an oracle that uses knowable behavior of a healthy system to identify abnormalities. In the world of Internet of Things (IoT), security, and anomalous behavior of sensors and other IoT components, will be orders of magnitude more difficult unless we make those elements security aware from the start. In this article we examine the ability of redundancy-based a nomaly detectors to recognize some high-risk and difficult to detect attacks on web servers—a likely management interface for many IoT stand-alone elements. In real life, it has taken long, a number of years in some cases, to identify some of the vulnerabilities and related attacks. We discuss practical relevance of the approach in the context of providing high-assurance Webservices that may belong to autonomous IoT applications and devices

2016-04-11
Carver, J., Burcham, M., Kocak, S., Bener, A., Felderer, M., Gander, M., King, J., Markkula, J., Oivo, M., Sauerwein, C. et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security - an Analysis of the 2015 IEEE Security & Privacy Proceedings. 2016 Symposium and Bootcamp on the Science of Security (HotSoS).

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2015-10-11
Kim, Donghoon, Schaffer, Henry E., Vouk, Mladen A..  2015.  About PaaS Security. 3rd International IBM Cloud Academy Conference (ICACON 2015).

Platform as a Service (PaaS) provides middleware resources to cloud customers. As demand for PaaS services increases, so do concerns about the security of PaaS. This paper discusses principal PaaS security and integrity requirements, and vulnerabilities and the corresponding countermeasures. We consider three core cloud elements: multi-tenancy, isolation, and virtualization and how they relate to PaaS services and security trends and concerns such as user and resource isolation, side-channel vulnerabilities in multi-tenant environments, and protection of sensitive data

Vangaveeti, Anoosha.  2015.  An Assessment of Security Problems in Open Source Software. Computer Science. MS

An Assessment of Security Problems in Open Source Software: Improving software security through changes in software design and development processes appears to be a very hard problem. For example, well documented security issues such as Structured Query Language injection, after more than a decade, still tops most vulnerability lists. Security priority is often subdued due to constraints such as time-to-market and resources. Furthermore, security process outcomes are hard to quantify and even harder to predict or relate to process improvement activities. In part this is because of the nature of the security faults - they are in statistical terms "rare" and often very complex compared to "regular" non-security faults. In part it is the irregular and unpredictable nature of the security threats and attacks that puts the software under attack into states it was not designed for and subjects it to what would be considered "nonoperational" use. In many cases it is the human component of the system that fails - for example, due to phishing or due to incorrect use of a software product. On the other hand, we have decades of experience developing reliable software (admittedly subject to similar resource, cost and time constraints). The central question of interest in this thesis is to what extent can we leverage some of the software reliability engineering (SRE) models, processes, and metrics that work in the "classical" operational space to develop predictive software security engineering assessment and development elements. Specific objectives are a) to investigate use of (possibly modified) SRE practices to characterize security properties of software, and b) assess how software design and development processes could be enhanced to avoid, eliminate and tolerate security problems and attacks.We are particularly interested in open source software security, the conditions under which SRE practices may be useful, and the information that this can provide about the security quality of a software product. We examined public information about security problem reports for open source Fedora and RHEL series of software releases, Chromium project and Android project. The data that we analyzed was primarily about security problems reported from post-release in-the-field use of the products. What can we learn about the non-operational processes (and possible threats) related to security problems? One aspect is classification of security problems based on the traits that contribute to the injection of problems into code, whether due to poor practices or limited knowledge (epistemic errors), or due to random accidental events (aleatoric errors). Knowing the distribution can help understand attack space and help improve development processes and testing of the next version. For example, in the case of Fedora, the distribution of security problems found post-release was consistent across two different releases of the software. The security problem discovery rate appears to be roughly constant but much lower (ten to a hundred times lower) than the initial non-security problem discovery rate. Similarly, in the case of RHEL, the distribution of security problems found post-release was consistent and the number of security problems kept decreasing across six different releases of the software. The security problem discovery rate appears to be roughly constant but again much lower than the initial non-security problem discovery rate. In the case of Chromium, the number of discovered security problems is orders of magnitude higher than for other products, except that does not appear to translate into a higher incidence of field breaches. One reason could be Chromium "bounty" for problem discovery. We find that some classical reliability models can be used as one of tools to estimate the residual number of security problems in both the current release and in the future releases of the software, and through that provide a measure of the security characteristics of the software. For example, to assess whether, under given usage conditions, security problem discovery rate is increasing or decreasing - and what that may mean. Based on our findings, we discuss an agile software testing process that combines operational and non-operational (or attack related) testing with the intent of finding and eliminating more security problems earlier in the software development process. The knowledge of vulnerable components from architectural view and the frequency of vulnerabilities in each of the components helps in prioritizing security test resources.

2016-06-27
Donghoon Kim, Mladen A. Vouk.  2015.  Securing Software Application Chains in a Cloud. 2nd International Conference on Information Science and Security (ICISS), 2015 . :1-4.

This paper presents an approach for securing software application chains in cloud environments. We use the concept of workflow management systems to explain the model. Our prototype is based on the Kepler scientific workflow system enhanced with a security analytics package. This model can be applied to other cloud based systems. Depending on the information being received from the cloud, this approach can also offer information about internal states of the resources in
the cloud. The approach we use hinges on (1) an ability to limit attacks to Input, Remote, and Output channels (or flows), and (2) validate the flows using operational profile (OP) or certification based signals. OP based validation is a statistical approach and may miss some of the attacks. However, where enumeration is possible (e.g., static web sites), this approach can offer high assurances of validity of the flows. It is also assumed that workflow components are sound so long as the input flows are limited to operational profile. Other acceptance testing approaches could be used to validate the flows. Work in progress has two thrusts: (1) using cloud-based Kepler workflows to probe and assess security states and operation of cloud resources (specifically VMs) under different workloads leveraging DACSA sensors; and (2) analyzing effectiveness of the proposed approach in securing workflows.

2015-07-06
Kim, Donghoon, Vouk, Mladen.  2015.  Securing Scientific Workflows. 2015 IEEE International Conference on Software Quality, Reliability and Security (QRS). :95-104.

This paper investigates security of Kepler scientificbworkflow engine. We are especially interested in Kepler-based scientific workflows that may operate in cloud environments. We find that (1) three security properties (i.e., input validation, remote access validation, and data integrity) are essential for making Kepler-based workflows more secure, and (2) that use of the Kepler provenance module may help secure Keplerbased workflows. We implemented a prototype security enhanced Kepler engine to demonstrate viability of use of the Kepler provenance module in provision and management of the desired security properties.

2016-05-04
Xianqing Yu, P. Ning, M. A. Vouk.  2015.  Enhancing security of Hadoop in a public cloud. Information and Communication Systems (ICICS), 2015 6th International Conference on. :38-43.

Hadoop has become increasingly popular as it rapidly processes data in parallel. Cloud computing gives reliability, flexibility, scalability, elasticity and cost saving to cloud users. Deploying Hadoop in cloud can benefit Hadoop users. Our evaluation exhibits that various internal cloud attacks can bypass current Hadoop security mechanisms, and compromised Hadoop components can be used to threaten overall Hadoop. It is urgent to improve compromise resilience, Hadoop can maintain a relative high security level when parts of Hadoop are compromised. Hadoop has two vulnerabilities that can dramatically impact its compromise resilience. The vulnerabilities are the overloaded authentication key, and the lack of fine-grained access control at the data access level. We developed a security enhancement for a public cloud-based Hadoop, named SEHadoop, to improve the compromise resilience through enhancing isolation among Hadoop components and enforcing least access privilege for Hadoop processes. We have implemented the SEHadoop model, and demonstrated that SEHadoop fixes the above vulnerabilities with minimal or no run-time overhead, and effectively resists related attacks.

2015-10-11
Rivers, Anthony T., Vouk, Mladen A., Williams, Laurie.  2014.  On Coverage-Based Attack Profiles. Eight International Conference on Software Security and Reliability (SERE) . :5-6.

Automated cyber attacks tend to be schedule and resource limited. The primary progress metric is often “coverage” of pre-determined “known” vulnerabilities that may not have been patched, along with possible zero-day exploits (if such exist). We present and discuss a hypergeometric process model that describes such attack patterns. We used web request signatures from the logs of a production web server to assess the applicability of the model.

Subramani, Shweta, Vouk, Mladen A., Williams, Laurie.  2014.  An Analysis of Fedora Security Profile. HotSoS 2014 Symposium and Bootcamp on the Science of Security (HotSoS). :169-71.

In our previous work we showed that for Fedora, under normal operational conditions, security problem discovery appears to be a random process. While in the case of Fedora, and a number of other open source products, classical reliability models can be adapted to estimate the number of residual security problems under “normal” operational usage (not attacks), the predictive ability of the model is lower for security faults due to the rarity of security events and because there appears to be no real security reliability growth. The ratio of security to non-security faults is an indicator that the process needs improving, but it also may be leveraged to assess vulnerability profile of a release and possibly guide testing of its next version. We manually analyzed randomly sampled problems for four different versions of Fedora and classified them into security vulnerability categories. We also analyzed the distribution of these problems over the software’s lifespan and we found that they exhibit a symmetry which can perhaps be used in estimating the number of residual security problems in the software. Based on our work, we believe that an approach to vulnerability elimination based on a combination of “classical” and some non-operational “bounded” high-assurance testing along the lines discussed in may yield good vulnerability elimination results, as well as a way of estimating vulnerability level of a release. Classical SRE methods, metrics and models can be used to track both non-security and security problem detection under normal operational profile. We can then model the reliability growth, if any, and estimate the number of residual faults by estimating the lower and upper bounds on the total number of faults of a certain type. In production, there may be a simpler alternative. Just count the vulnerabilities and project over the next period assuming constant vulnerability discovery rate. In testing phase, to accelerate the process, one might leverage collected vulnerability information to generate non-operational test-cases aimed at vulnerability categories. The observed distributions of security problems reported under normal “operational” usage appear to support the above approach – i.e., what is learned say in the first x weeks can them be leveraged in selecting test cases in the next stage. Similarly, what is learned about a product Y weeks after its release may be very indicative of its vulnerability profile for the rest of its life given the assumption of constant vulnerability discovery rate.

Kim, Donghoon, Vouk, Mladen A..  2014.  A survey of common security vulnerabilities and corresponding countermeasures for SaaS. Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), Globecom. :59-63.

Software as a Service (SaaS) is the most prevalent service delivery mode for cloud systems. This paper surveys common security vulnerabilities and corresponding countermeasures for SaaS. It is primarily focused on the work published in the last five years. We observe current SaaS security trends and a lack of sufficiently broad and robust countermeasures in some of the SaaS security area such as Identity and Access management due to the growth of SaaS applications.

Subramani, Shweta.  2014.  Security Profile of Fedora. Computer Science. MS:105.

The process of software development and evolution has proven difficult to improve. For example,  well documented security issues such as SQL injection (SQLi), after more than a decade, still top  most vulnerability lists. Quantitative security process and quality metrics are often subdued due to  lack of time and resources. Security problems are hard to quantify and even harder to predict or  relate to any process improvement activity.  The goal of this thesis is to assess usefulness of “classical” software reliability engineering (SRE)  models in the context of open source software security, the conditions under which they may be  useful, and the information that they can provide with respect to the security quality of a software  product.  We start with security problem reports for open source Fedora series of software releases.We  illustrate how one can learn from normal operational profile about the non-operational processes  related to security problems. One aspect is classification of security problems based on the human  traits that contribute to the injection of problems into code, whether due to poor practices or limited  knowledge (epistemic errors), or due to random accidental events (aleatoric errors). Knowing the  distribution aids in development of an attack profile. In the case of Fedora, the distribution of  security problems found post-release was consistent across four different releases of the software.  The security problem discovery rate appears to be roughly constant but much lower than the initial  non-security problem discovery rate. Previous work has shown that non-operational testing can help  accelerate and focus the problem discovery rate and that it can be successfully modeled.We find  that some classical reliability models can be used with success to estimate the residual number of  security problems, and through that provide a measure of the security characteristics of the software.  We propose an agile software testing process that combines operational and non-operational (or  attack related) testing with the intent of finding more security problems faster. 

Subramani, Shweta, Vouk, Mladen A., Williams, Laurie.  2013.  Non-Operational Testing of Software for Security Issues. ISSRE 2013. :pp21-22.

We have been studying extension of the classical Software Reliability Engineering (SRE) methodology into the security space. We combine “classical” reliability modeling, when applied to reported vulnerabilities found under “normal” operational profile conditions, with safety oriented fault management processes. We illustrate with open source Fedora software.

Our initial results appear to indicate that generation of a repeatable automated test-strategy that would explicitly cover the “top 25” security problems may help considerably – eliminating perhaps as much as 50% of the field observable problems. However, genuine aleatoric and more process oriented incomplete analysis and design flaws remain. While we have made some progress in identifying focus areas, a number of questions remain, and we continue working on them.

Lee, Da Young, Vouk, Mladen A., Williams, Laurie.  2013.  Using software reliability models for security assessment — Verification of assumptions. IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 2013. :pp23-24.

Can software reliability models be used to assess software security? One of the issues is that security problems are relatively rare under “normal” operational profiles, while “classical” reliability models may not be suitable for use in attack conditions. We investigated a range of Fedora open source software security problems to see if some of the basic assumptions behind software reliability growth models hold for discovery of security problems in non-attack situations. We find that in some cases, under “normal” operational use, security problem detection process may be described as a Poisson process. In those cases, we can use appropriate classical software reliability growth models to assess “security reliability” of that software in non-attack situations.We analyzed security problem discovery rate for RedHat Fedora. We find that security problems are relatively rare, their rate of discovery appears to be relatively constant under “normal” (non-attack) conditions. Discovery process often appears to satisfy Poisson assumption opening doors to use of classical reliability models. We illustrated using Yamada S-shaped model fit to v15 that in some cases such models may be effective in predicting the number of remaining security problems, and thus may offer a way of assessing security “quality” of the software product (although not necessarily its behavior under an attack).