Biblio
Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.
This Research to Practice Full Paper presents a new methodology in cybersecurity education. In the context of the cybersecurity profession, the `isolation problem' refers to the observed isolation of different knowledge units, as well as the isolation of technical and business perspectives. Due to limitations in existing cybersecurity education, professionals entering the field are often trapped in microscopic perspectives, and struggle to extend their findings to grasp the big picture in a target network scenario. Guided by a previous developed and published framework named “cross-layer situation knowledge reference model” (SKRM), which delivers comprehensive level big picture situation awareness, our new methodology targets at developing suites of teaching modules to address the above issues. The modules, featuring interactive hands-on labs that emulate real-world multiple-step attacks, will help students form a knowledge network instead of isolated conceptual knowledge units. Students will not just be required to leverage various techniques/tools to analyze breakpoints and complete individual modules; they will be required to connect logically the outputs of these techniques/tools to infer the ground truth and gain big picture awareness of the cyber situation. The modules will be able to be used separately or as a whole in a typical network security course.
An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.
To overcome the current cybersecurity challenges of protecting our cyberspace and applications, we present an innovative cloud-based architecture to offer resilient Dynamic Data Driven Application Systems (DDDAS) as a cloud service that we refer to as resilient DDDAS as a Service (rDaaS). This architecture integrates Service Oriented Architecture (SOA) and DDDAS paradigms to offer the next generation of resilient and agile DDDAS-based cyber applications, particularly convenient for critical applications such as Battle and Crisis Management applications. Using the cloud infrastructure to offer resilient DDDAS routines and applications, large scale DDDAS applications can be developed by users from anywhere and by using any device (mobile or stationary) with the Internet connectivity. The rDaaS provides transformative capabilities to achieve superior situation awareness (i.e., assessment, visualization, and understanding), mission planning and execution, and resilient operations.
Research towards my dissertation has involved a series of perceptual and accessibility-focused studies concerned with the use of tactile cues for spatial and situational awareness, displayed through head-mounted wearables. These studies were informed by an initial participatory design study of mobile technology multitasking and tactile interaction habits. This research has yielded a number of actionable conclusions regarding the development of tactile interfaces for the head, and endeavors to provide greater insight into the design of advanced tactile alerting for contextual and spatial understanding in assistive applications (e.g. for individuals who are blind or those encountering situational impairments), as well as guidance for developers regarding assessment of interaction between under-utilized sensory modalities and underlying perceptual and cognitive processes.
In the pursuit of cyber security for organizations, there are tens of thousands of tools, guidelines, best practices, forensics, platforms, toolkits, diagnostics, and analytics available. However according to the Verizon 2014 Data Breach Report: “after analysing 10 years of data... organizations cannot keep up with cyber crime-and the bad guys are winning.” Although billions are expended worldwide on cyber security, organizations struggle with complexity, e.g., the NISTIR 7628 guidelines for cyber-physical systems are over 600 pages of text. And there is a lack of information visibility. Organizations must bridge the gap between technical cyber operations and the business/social priorities since both sides are essential for ensuring cyber security. Identifying visual structures for information synthesis could help reduce the complexity while increasing information visibility within organizations. This paper lays the foundation for investigating such visual structures by first identifying where current visual structures are succeeding or failing. To do this, we examined publicly available analyses related to three types of security issues: 1) epidemic, 2) cyber attacks on an industrial network, and 3) threat of terrorist attack. We found that existing visual structures are largely inadequate for reducing complexity and improving information visibility. However, based on our analysis, we identified a range of different visual structures, and their possible trade-offs/limitation is framing strategies for cyber policy. These structures form the basis of evolving visualization to support information synthesis for policy actions, which has rarely been done but is promising based on the efficacy of existing visualizations for cyber incident detection, attacks, and situation awareness.
Security analysis requires some degree of knowledge to align threats to vulnerabilities in information technology. Despite the abundance of security requirements, the evidence suggests that security experts are not applying these checklists. Instead, they default to their background knowledge to identify security vulnerabilities. To better understand the different effects of security checklists, analysis and expertise, we conducted a series of interviews to capture and encode the decisionmaking process of security experts and novices during three security requirements analysis exercises. Participants were asked to analyze three kinds of artifacts: source code, data flow diagrams, and network diagrams, for vulnerabilities, and then to apply a requirements checklist to demonstrate their ability to mitigate vulnerabilities. We framed our study using Situation Awareness theory to elicit responses that were analyzed using coding theory and grounded analysis. Our results include decision-making patterns that characterize how analysts perceive, comprehend and project future threats, and how these patterns relate to selecting security mitigations. Based on this analysis, we discovered new theory to measure how security experts and novices apply attack models and how structured and unstructured analysis enables increasing security requirements coverage. We discuss suggestions of how our method could be adapted and applied to improve training and education instruments of security analysts.
Research shows that commonly accepted security requirements are not generally applied in practice. Instead of relying on requirements checklists, security experts rely on their expertise and background knowledge to identify security vulnerabilities. To understand the gap between available checklists and practice, we conducted a series of interviews to encode the decision-making process of security experts and novices during security requirements analysis. Participants were asked to analyze two types of artifacts: source code, and network diagrams for vulnerabilities and to apply a requirements checklist to mitigate some of those vulnerabilities. We framed our study using Situation Awareness—a cognitive theory from psychology—to elicit responses that we later analyzed using coding theory and grounded analysis. We report our preliminary results of analyzing two interviews that reveal possible decision- making patterns that could characterize how analysts perceive, comprehend and project future threats which leads them to decide upon requirements and their specifications, in addition, to how experts use assumptions to overcome ambiguity in specifications. Our goal is to build a model that researchers can use to evaluate their security requirements methods against how experts transition through different situation awareness levels in their decision-making process.