Biblio
Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).
Embedded software is found everywhere from our highly visible mobile devices to the confines of our car in the form of smart sensors. Embedded software companies are under huge pressure to produce safe applications that limit risks, and testing is absolutely critical to alleviate concerns regarding safety and user privacy. This requires using large test suites throughout the development process, increasing time-to-market and ultimately hindering competitivity. Speeding up test execution is, therefore, of paramount importance for embedded software developers. This is traditionally achieved by running, in parallel, multiple tests on large-scale clusters of computers. However, this approach is costly in terms of infrastructure maintenance and energy consumed, and is at times inconvenient as developers have to wait for their tests to be scheduled on a shared resource. We propose to look at exploiting GPUs (Graphics Processing Units) for running embedded software testing. GPUs are readily available in most computers and offer tremendous amounts of parallelism, making them an ideal target for embedded software testing. In this paper, we demonstrate, for the first time, how test executions of embedded C programs can be automatically performed on a GPU, without involving the end user. We take a compiler-assisted approach which automatically compiles the C program into GPU kernels for parallel execution of the input tests. Using this technique, we achieve an average speedup of 16Ã when compared to CPU execution of input tests across nine programs from an industry standard embedded benchmark suite.
For the Internet of Things (IoT), for safety in automotive, or for data protection, to be legally compliant requires testing the impact of any actions before allowing them to occur. However, system boundaries change at runtime. When adding a new, previously unknown device to an IoT orchestra, or when an autonomous car meets another, or with truck platooning, the original base system expands and needs being tested before it can do decisions with the potential of affecting harm to humans. This paper explains the theory and outlines the implementation approach a framework for autonomous real-time testing of a software-based system while in operation, with an example from IoT.
Pervasiveness of smartphones and the vast number of corresponding apps have underlined the need for applicable automated software testing techniques. A wealth of research has been focused on either unit or GUI testing of smartphone apps, but little on automated support for end-to-end system testing. This paper presents SIG-Droid, a framework for system testing of Android apps, backed with automated program analysis to extract app models and symbolic execution of source code guided by such models for obtaining test inputs that ensure covering each reachable branch in the program. SIG-Droid leverages two automatically extracted models: Interface Model and Behavior Model. The Interface Model is used to find values that an app can receive through its interfaces. Those values are then exchanged with symbolic values to deal with constraints with the help of a symbolic execution engine. The Behavior Model is used to drive the apps for symbolic execution and generate sequences of events. We provide an efficient implementation of SIG-Droid based in part on Symbolic PathFinder, extended in this work to support automatic testing of Android apps. Our experiments show SIG-Droid is able to achieve significantly higher code coverage than existing automated testing tools targeted for Android.