Biblio
Modern software development frequently uses third-party packages, raising the concern of supply chain security attacks. Many attackers target popular package managers, like npm, and their users with supply chain attacks. In 2021 there was a 650% year-on-year growth in security attacks by exploiting Open Source Software's supply chain. Proactive approaches are needed to predict package vulnerability to high-risk supply chain attacks. The goal of this work is to help software developers and security specialists in measuring npm supply chain weak link signals to prevent future supply chain attacks by empirically studying npm package metadata.
In this paper, we analyzed the metadata of 1.63 million JavaScript npm packages. We propose six signals of security weaknesses in a software supply chain, such as the presence of install scripts, maintainer accounts associated with an expired email domain, and inactive packages with inactive maintainers. One of our case studies identified 11 malicious packages from the install scripts signal. We also found 2,818 maintainer email addresses associated with expired domains, allowing an attacker to hijack 8,494 packages by taking over the npm accounts. We obtained feedback on our weak link signals through a survey responded to by 470 npm package developers. The majority of the developers supported three out of our six proposed weak link signals. The developers also indicated that they would want to be notified about weak links signals before using third-party packages. Additionally, we discussed eight new signals suggested by package developers.
Focusing on security management for supply chain under emergencies, this paper analyzes the characteristics of supply chain risk, clarifies the relationship between business continuity management and security management for supply chain, organizational resilience and security management for supply chain separately, so as to propose suggestions to promote the realization of security management for supply chain combined these two concepts, which is of guiding significance for security management for supply chain and quality assurance of products and services under emergencies.
Quality assurance and food safety are the most problem that the consumers are special care. To solve this problem, the enterprises must improve their food supply chain management system. In addition to tracking and storing orders and deliveries, it also ensures transparency and traceability of food production and transportation. This is a big challenge that the food supply chain system using the client-server model cannot meet with the requirements. Blockchain was first introduced to provide distributed records of digital currency exchanges without reliance on centralized management agencies or financial institutions. Blockchain is a disruptive technology that can improve supply chain related transactions, enable to access data permanently, data security, and provide a distributed database. In this paper, we propose a method to design a food supply chain management system base on Blockchain technology that is capable of bringing consumers’ trust in food traceability as well as providing a favorable supply and transaction environment. Specifically, we design a system architecture that is capable of controlling and tracking the entire food supply chain, including production, processing, transportation, storage, distribution, and retail. We propose the KDTrace system model and the Channel of KDTrace network model. The Smart contract between the organizations participating in the transaction is implemented in the Channel of KDTrace network model. Therefore, our supply chain system can decrease the problem of data explosion, prevent data tampering and disclosure of sensitive information. We have built a prototype based on Hyperledger Fabric Blockchain. Through the prototype, we demonstrated the effectiveness of our method and the suitability of the use cases in a supply chain. Our method that uses Blockchain technology can improve efficiency and security of the food supply chain management system compared with traditional systems, which use a clientserver model.
Cyber supply chain (CSC) security cost effectiveness should be the first and foremost decision to consider when integrating various networks in supplier inbound and outbound chains. CSC systems integrate different organizational network systems nodes such as SMEs and third-party vendors for business processes, information flows, and delivery channels. Adversaries are deploying various attacks such as RAT and Island-hopping attacks to penetrate, infiltrate, manipulate and change delivery channels. However, most businesses fail to invest adequately in security and do not consider analyzing the long term benefits of that to monitor and audit third party networks. Thus, making cost benefit analysis the most overriding factor. The paper explores the cost-benefit analysis of investing in cyber supply chain security to improve security. The contribution of the paper is threefold. First, we consider the various existing cybersecurity investments and the supply chain environment to determine their impact. Secondly, we use the NPV method to appraise the return on investment over a period of time. The approach considers other methods such as the Payback Period and Internal Rate of Return to analyze the investment appraisal decisions. Finally, we propose investment options that ensure CSC security performance investment appraisal, ROI, and business continuity. Our results show that NVP can be used for cost-benefit analysis and to appraise CSC system security to ensure business continuity planning and impact assessment.
Before contracting with a supplier, vendor, manufacturer, or any other third-party organization, it is essential to review their security practices. The third-party must have a supply chain risk management program as well as a robust risk-based approach to cybersecurity and supply chain security.
With the rapid development of IoT in recent years, IoT is increasingly being used as an endpoint of supply chains. In general, as the majority of data is now being stored and shared over the network, information security is an important issue in terms of secure supply chain management. In response to cyber security breaches and threats, there has been much research and development on the secure storage and transfer of data over the network. However, there is a relatively limited amount of research and proposals for the security of endpoints, such as IoT linked in the supply chain network. In addition, it is difficult to ensure reliability for IoT itself due to a lack of resources such as CPU power and storage. Ensuring the reliability of IoT is essential when IoT is integrated into the supply chain. Thus, in order to secure the supply chain, we need to improve the reliability of IoT, the endpoint of the supply chain. In this work, we examine the use of IoT gateways, client certificates, and IdP as methods to compensate for the lack of IoT resources. The results of our qualitative evaluation demonstrate that using the IdP method is the most effective.
Increasing consumer experience and companies inner quality presents a direct demand of different requirements on supply chain traceability. Typically, existing solutions have separate data storages which eventually provide limited support when multiple individuals are included. Therefore, the block-chain-based methods are utilized to defeat these deficiencies by generating digital illustrations of real products to following several objects at the same time. Nevertheless, they actually cannot identify the change of products in manufacturing methods. The connection between components included in the production decreased, whereby the ability to follow a product’s origin reduced consequently. In this paper, a methodology is recommended which involves using a Block-chain in Supply Chain Traceability, to solve the issues of manipulations and changes in data and product source. The method aims to improve the product’s origin transparency. Block-chain technology produces a specific method of storing data into a ledger, which is raised on many end-devices such as servers or computers. Unlike centralized systems, the records of the present system are encrypted and make it difficult to be manipulated. Accordingly, this method manages the product’s traceability changes. The recommended system is performed for the cheese supply chain. The result were found to be significant in terms of increasing food security and distributors competition.
The supply chain has been much developed with the internet technology being used in the business world. Some issues are becoming more and more evident than before in the course of the fast evolution of the supply chain. Among these issues, the remarkable problems include low efficiency of communication, insufficient operational outcomes and lack of the credit among the participants in the whole chain. The main reasons to cause these problems lie in the isolated information unable to be traced and in the unclear responsibility, etc. In recent years, the block chain technology has been growing fast. Being decentralized, traceable and unable to be distorted, the block chain technology is well suitable for solving the problems existing in the supply chain. Therefore, the paper first exposes the traditional supply chain mode and the actual situation of the supply chain management. Then it explains the block chain technology and explores the application & effects of the block chain technology in the traditional supply chain. Next, a supply chain style is designed on the base of the block chain technology. Finally the potential benefits of the remolded supply chain are foreseen if it is applied in the business field.
This paper argues that the security management of the robot supply chain would preferably focus on Sino-US relations and technical bottlenecks based on a comprehensive security analysis through open-source intelligence and data mining of associated discourses. Through the lens of the newsboy model and game theory, this study reconstructs the risk appraisal model of the robot supply chain and rebalances the process of the Sino-US competition game, leading to the prediction of China's strategic movements under the supply risks. Ultimately, this paper offers a threefold suggestion: increasing the overall revenue through cost control and scaled expansion, resilience enhancement and risk prevention, and outreach of a third party's cooperation for confrontation capabilities reinforcement.
Organizations are concerned about the risks associated with products and services that may contain potentially malicious functionality, are counterfeit, or are vulnerable due to poor manufacturing and development practices within the cyber supply chain. These risks are associated with an enterprise’s decreased visibility into, and understanding of, how the technology that they acquire is developed, integrated, and deployed, as well as the processes, procedures, and practices used to assure the security, resilience, reliability, safety, integrity, and quality of the products and services. This publication provides guidance to organizations on identifying, assessing, and mitigating cyber supply chain risks at all levels of their organizations. The publication integrates cyber supply chain risk management (C-SCRM) into risk management activities by applying a multi-level, C-SCRM-specific approach, including guidance on development of C-SCRM strategy implementation plans, C-SCRM policies, C-SCRM plans, and C-SCRM risk assessments for products and services.
In an agricultural supply chain, farmers, food processors, transportation agencies, importers, and exporters must comply with different regulations imposed by one or more jurisdictions depending on the nature of their business operations. Supply chain stakeholders conventionally transport their goods, along with the corresponding documentation via regulators for compliance checks. This is generally followed by a tedious and manual process to ensure the goods meet regulatory requirements. However, supply chain systems are changing through digitization. In digitized supply chains, data is shared with the relevant stakeholders through digital supply chain platforms, including blockchain technology. In such datadriven digital supply chains, the regulators may be able to leverage digital technologies, such as artificial intelligence and machine learning, to automate the compliance verification process. However, a barrier to progress is the risk that information will not be credible, thus reversing the gains that automation could achieve. Automating compliance based on inaccurate data may compromise the safety and credibility of the agricultural supply chain, which discourages regulators and other stakeholders from adopting and relying on automation. Within this article we consider the challenges of digital supply chains when we describe parts of the compliance management process and how it can be automated to improve the operational efficiency of agricultural supply chains. We introduce assisted autonomy as a means to pragmatically automate the compliance verification process by combining the power of digital systems while keeping the human in-the-loop. We argue that autonomous compliance is possible, but that the need for human led inspection processes will never be replaced by machines, however it can be minimised through “assisted autonomy”.
In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.
Many recent data breaches have been linked to supply chain risks. For example, a recent high- profile attack that took place in the second half of 2018, Operation ShadowHammer, compromised an update utility used by a global computer manufacturer.1 The compromised software was served to users through the manufacturer’s official website and is estimated to have impacted up to a million users before it was discovered. This is reminiscent of the attack by the Dragonfly group, which started in 2013 and targeted industrial control systems.2 This group successfully inserted malware into software that was available for download through the manufacturers’ websites, which resulted in companies in critical industries such as energy being impacted by this malware. These incidents are not isolated events. Many recent reports suggest these attacks are increasing in frequency. An Incident Response Threat Report published in April 2019 by Carbon Black highlighted the use of “island hopping” by 50 % of attacks.3 Island hopping is an attack that focuses on impacting not only the victim but its customers and partners, especially if these partners have network interconnections. Symantec’s 2019 Security Threat Report found supply chain attacks increased by 78 % in 2018.4 Perhaps more worrying is that a large number of these attacks appear to be successful and cause significant damage. A November 2018 study, Data Risk in the Third-Party Ecosystem, conducted by the Ponemon Institute found that 59 % of companies surveyed experienced a data breach caused by one of their third parties.5 A July 2018 survey conducted by Crowdstrike found software supply chains even more vulnerable with 66 % of respondents reporting a software supply chain attack, 90 % of whom faced financial impacts as a result of the attack.
The aim of this study is to determine the current challenges related to security and trust issues in digital supply chains. The development of information and communication technologies (ICT) has improved the efficiency of supply chains, while creating new vulnerabilities and increasing the likelihood of security threats. Previous studies lack the physical security aspect, so the emphasis is on the security of cyber-physical systems. In order to achieve the goal of the study, traditional and digital supply chains, their security risks and main differences were examined. A security framework for cyber-physical risks in digital supply chains was developed.