Biblio
This paper introduces typy, a statically typed programming language embedded by reflection into Python. typy features a fragmentary semantics, i.e. it delegates semantic control over each term, drawn from Python's fixed concrete and abstract syntax, to some contextually relevant user-defined semantic fragment. The delegated fragment programmatically 1) typechecks the term (following a bidirectional protocol); and 2) assigns dynamic meaning to the term by computing a translation to Python.
We argue that this design is expressive with examples of fragments that express the static and dynamic semantics of 1) functional records; 2) labeled sums (with nested pattern matching a la ML); 3) a variation on JavaScript's prototypal object system; and 4) typed foreign interfaces to Python and OpenCL. These semantic structures are, or would need to be, defined primitively in conventionally structured languages.
We further argue that this design is compositionally well-behaved. It avoids the expression problem and the problems of grammar composition because the syntax is fixed. Moreover, programs are semantically stable under fragment composition (i.e. defining a new fragment will not change the meaning of existing program components.)
This paper introduces typy, a statically typed programming language embedded by reflection into Python. typy features a fragmentary semantics, i.e. it delegates semantic control over each term, drawn from Python's fixed concrete and abstract syntax, to some contextually relevant user-defined semantic fragment. The delegated fragment programmatically 1) typechecks the term (following a bidirectional protocol); and 2) assigns dynamic meaning to the term by computing a translation to Python. We argue that this design is expressive with examples of fragments that express the static and dynamic semantics of 1) functional records; 2) labeled sums (with nested pattern matching a la ML); 3) a variation on JavaScript's prototypal object system; and 4) typed foreign interfaces to Python and OpenCL. These semantic structures are, or would need to be, defined primitively in conventionally structured languages. We further argue that this design is compositionally well-behaved. It avoids the expression problem and the problems of grammar composition because the syntax is fixed. Moreover, programs are semantically stable under fragment composition (i.e. defining a new fragment will not change the meaning of existing program components.)
Programming languages often include specialized syntax for common datatypes e.g. lists and some also build in support for specific specialized datatypes e.g. regular expressions, but user-defined types must use general-purpose syntax. Frustration with this causes developers to use strings, rather than structured data, with alarming frequency, leading to correctness, performance, security, and usability issues. Allowing library providers to modularly extend a language with new syntax could help address these issues. Unfortunately, prior mechanisms either limit expressiveness or are not safely composable: individually unambiguous extensions can still cause ambiguities when used together. We introduce type-specific languages TSLs: logic associated with a type that determines how the bodies of generic literals, able to contain arbitrary syntax, are parsed and elaborated, hygienically. The TSL for a type is invoked only when a literal appears where a term of that type is expected, guaranteeing non-interference. We give evidence supporting the applicability of this approach and formally specify it with a bidirectionally typed elaboration semantics for the Wyvern programming language.