Biblio
Despite the wide of range of research and technologies that deal with the problem of routing in computer networks, there remains a gap between the level of network hardware administration and the level of business requirements and constraints. Not much has been accomplished in literature in order to have a direct enforcement of such requirements on the network. This paper presents a new solution in specifying and directly enforcing security policies to control the routing configuration in a software-defined network by using Row-Level Security checks which enable fine-grained security policies on individual rows in database tables. We show, as a first step, how a specific class of such policies, namely multilevel security policies, can be enforced on a database-defined network, which presents an abstraction of a network's configuration as a set of database tables. We show that such policies can be used to control the flow of data in the network either in an upward or downward manner.
Software Defined Network (SDN) is a revolutionary networking paradigm which provides the flexibility of programming the network interface as per the need and demand of the user. Software Defined Network (SDN) is independent of vendor specific hardware or protocols and offers the easy extensions in the networking. A customized network as per on user demand facilitates communication control via a single entity i.e. SDN controller. Due to this SDN Controller has become more vulnerable to SDN security attacks and more specifically a single point of failure. It is worth noticing that vulnerabilities were identified because of customized applications which are semi-independent of underlying network infrastructure. No doubt, SDN has provided numerous benefits like breaking vendor lock-ins, reducing overhead cost, easy innovations, increasing programmability among devices, introducing new features and so on. But security of SDN cannot be neglected and it has become a major topic of debate. The communication channel used in SDN is OpenFlow which has made TLS implementation an optional approach in SDN. TLS adoption is important and still vulnerable. This paper focuses on making SDN OpenFlow communication more secure by following extended TLS support and defensive algorithm.
The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.
In recent years, mobile social networks (MSNs) have developed rapidly and their application fields are becoming more and more widespread. Due to the continuous movement of nodes in mobile social networks, the network topology is very unstable. How to ensure the credibility of network communication is a subject worth studying. In this paper, based on the characteristics of mobile social networks, the definition of trust level is introduced into the DSR routing protocol, and a trusted DSR routing mechanism (TDR) is proposed. The scheme combines the sliding window model to design the calculation method of trust level between nodes and path trust level. The nodes in the network participate in the routing process according to their trust level. When the source node receives multiple routes carried by the response, the appropriate trusted path is selected according to the path trust level. Through simulation analysis, compared with the original DSR protocol, the TDR protocol improves the performance of average delay, route cost and packet delivery fraction, and verifies the reliability and credibility of the TDR protocol.
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.
We consider the problem of attack detection for IoT networks based only on passively collected network parameters. For the first time in the literature, we develop a blind attack detection method based on data conformity evaluation. Network parameters collected passively, are converted to their conformity values through iterative projections on refined L1-norm tensor subspaces. We demonstrate our algorithmic development in a case study for a simulated star topology network. Type of attack, affected devices, as well as, attack time frame can be easily identified.
In Cloud Computing Environment, using only static security measures didn't mitigate the attack considerably. Hence, deployment of sophisticated methods by the attackers to understand the network topology of complex network makes the task easier. For this reason, the use of dynamic security measure as virtual machine (VM) migration increases uncertainty to locate a virtual machine in a dynamic attack surface. Although this, not all VM's migration enhances security. Indeed, the destination server to host the VM should be selected precisely in order to avoid externality and attack at the same time. In this paper, we model migration in cloud environment by using continuous Markov Chain. Then, we analyze the probability of a VM to be compromised based on the destination server parameters. Finally, we provide some numerical results to show the effectiveness of our approach in term of avoiding intrusion.
Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.
Common vulnerability scoring system (CVSS) is an industry standard that can assess the vulnerability of nodes in traditional computer systems. The metrics computed by CVSS would determine critical nodes and attack paths. However, traditional IT security models would not fit IoT embedded networks due to distinct nature and unique characteristics of IoT systems. This paper analyses the application of CVSS for IoT embedded systems and proposes an improved vulnerability scoring system based on CVSS v3 framework. The proposed framework, named CVSSIoT, is applied to a realistic IT supply chain system and the results are compared with the actual vulnerabilities from the national vulnerability database. The comparison result validates the proposed model. CVSSIoT is not only effective, simple and capable of vulnerability evaluation for traditional IT system, but also exploits unique characteristics of IoT devices.
Software Defined Networking (SDN) is very popular due to the benefits it provides such as scalability, flexibility, monitoring, and ease of innovation. However, it needs to be properly protected from security threats. One major attack that plagues the SDN network is the distributed denial-of-service (DDoS) attack. There are several approaches to prevent the DDoS attack in an SDN network. We have evaluated a few machine learning techniques, i.e., J48, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), to detect and block the DDoS attack in an SDN network. The evaluation process involved training and selecting the best model for the proposed network and applying it in a mitigation and prevention script to detect and mitigate attacks. The results showed that J48 performs better than the other evaluated algorithms, especially in terms of training and testing time.
Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.
We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.