Biblio

Filters: Keyword is protocol  [Clear All Filters]
2017-03-08
Jin, Y., Zhu, H., Shi, Z., Lu, X., Sun, L..  2015.  Cryptanalysis and improvement of two RFID-OT protocols based on quadratic residues. 2015 IEEE International Conference on Communications (ICC). :7234–7239.

The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.

Ray, B., Howdhury, M., Abawajy, J., Jesmin, M..  2015.  Secure object tracking protocol for Networked RFID Systems. 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :1–7.

Networked systems have adapted Radio Frequency identification technology (RFID) to automate their business process. The Networked RFID Systems (NRS) has some unique characteristics which raise new privacy and security concerns for organizations and their NRS systems. The businesses are always having new realization of business needs using NRS. One of the most recent business realization of NRS implementation on large scale distributed systems (such as Internet of Things (IoT), supply chain) is to ensure visibility and traceability of the object throughout the chain. However, this requires assurance of security and privacy to ensure lawful business operation. In this paper, we are proposing a secure tracker protocol that will ensure not only visibility and traceability of the object but also genuineness of the object and its travel path on-site. The proposed protocol is using Physically Unclonable Function (PUF), Diffie-Hellman algorithm and simple cryptographic primitives to protect privacy of the partners, injection of fake objects, non-repudiation, and unclonability. The tag only performs a simple mathematical computation (such as combination, PUF and division) that makes the proposed protocol suitable to passive tags. To verify our security claims, we performed experiment on Security Protocol Description Language (SPDL) model of the proposed protocol using automated claim verification tool Scyther. Our experiment not only verified our claims but also helped us to eliminate possible attacks identified by Scyther.

2017-02-21
M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, M. K. Reiter.  2015.  "Caesar: high-speed and memory-efficient forwarding engine for future internet architecture". 2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :171-182.

In response to the critical challenges of the current Internet architecture and its protocols, a set of so-called clean slate designs has been proposed. Common among them is an addressing scheme that separates location and identity with self-certifying, flat and non-aggregatable address components. Each component is long, reaching a few kilobits, and would consume an amount of fast memory in data plane devices (e.g., routers) that is far beyond existing capacities. To address this challenge, we present Caesar, a high-speed and length-agnostic forwarding engine for future border routers, performing most of the lookups within three fast memory accesses. To compress forwarding states, Caesar constructs scalable and reliable Bloom filters in Ternary Content Addressable Memory (TCAM). To guarantee correctness, Caesar detects false positives at high speed and develops a blacklisting approach to handling them. In addition, we optimize our design by introducing a hashing scheme that reduces the number of hash computations from k to log(k) per lookup based on hash coding theory. We handle routing updates while keeping filters highly utilized in address removals. We perform extensive analysis and simulations using real traffic and routing traces to demonstrate the benefits of our design. Our evaluation shows that Caesar is more energy-efficient and less expensive (in terms of total cost) compared to optimized IPv6 TCAM-based solutions by up to 67% and 43% respectively. In addition, the total cost of our design is approximately the same for various address lengths.

2015-05-04
Banerjee, D., Bo Dong, Biswas, S., Taghizadeh, M..  2014.  Privacy-preserving channel access using blindfolded packet transmissions. Communication Systems and Networks (COMSNETS), 2014 Sixth International Conference on. :1-8.

This paper proposes a novel wireless MAC-layer approach towards achieving channel access anonymity. Nodes autonomously select periodic TDMA-like time-slots for channel access by employing a novel channel sensing strategy, and they do so without explicitly sharing any identity information with other nodes in the network. An add-on hardware module for the proposed channel sensing has been developed and the proposed protocol has been implemented in Tinyos-2.x. Extensive evaluation has been done on a test-bed consisting of Mica2 hardware, where we have studied the protocol's functionality and convergence characteristics. The functionality results collected at a sniffer node using RSSI traces validate the syntax and semantics of the protocol. Experimentally evaluated convergence characteristics from the Tinyos test-bed were also found to be satisfactory.

2015-05-06
Gandino, F., Montrucchio, B., Rebaudengo, M..  2014.  Key Management for Static Wireless Sensor Networks With Node Adding. Industrial Informatics, IEEE Transactions on. 10:1133-1143.

Wireless sensor networks offer benefits in several applications but are vulnerable to various security threats, such as eavesdropping and hardware tampering. In order to reach secure communications among nodes, many approaches employ symmetric encryption. Several key management schemes have been proposed in order to establish symmetric keys. The paper presents an innovative key management scheme called random seed distribution with transitory master key, which adopts the random distribution of secret material and a transitory master key used to generate pairwise keys. The proposed approach addresses the main drawbacks of the previous approaches based on these techniques. Moreover, it overperforms the state-of-the-art protocols by providing always a high security level.

2015-05-04
Gerdes, S., Bergmann, O., Bormann, C..  2014.  Delegated Authenticated Authorization for Constrained Environments. Network Protocols (ICNP), 2014 IEEE 22nd International Conference on. :654-659.

Smart objects are small devices with limited system resources, typically made to fulfill a single simple task. By connecting smart objects and thus forming an Internet of Things, the devices can interact with each other and their users and support a new range of applications. Due to the limitations of smart objects, common security mechanisms are not easily applicable. Small message sizes and the lack of processing power severely limit the devices' ability to perform cryptographic operations. This paper introduces a protocol for delegating client authentication and authorization in a constrained environment. The protocol describes how to establish a secure channel based on symmetric cryptography between resource-constrained nodes in a cross-domain setting. A resource-constrained node can use this protocol to delegate authentication of communication peers and management of authorization information to a trusted host with less severe limitations regarding processing power and memory.
 

2015-05-05
Bande, V., Pop, S., Pitica, D..  2014.  Smart diagnose procedure for data acquisition systems inside dams. Design and Technology in Electronic Packaging (SIITME), 2014 IEEE 20th International Symposium for. :179-182.

This scientific paper reveals an intelligent system for data acquisition for dam monitoring and diagnose. This system is built around the RS485 communication standard and uses its own communication protocol [2]. The aim of the system is to monitor all signal levels inside the communication bus, respectively to detect the out of action data loggers. The diagnose test extracts the following functional parameters: supply voltage and the absolute value and common mode value for differential signals used in data transmission (denoted with “A” and “B”). Analyzing this acquired information, it's possible to find short-circuits or open-circuits across the communication bus. The measurement and signal processing functions, for flaws, are implemented inside the system's central processing unit. The next testing step is finding the out of action data loggers and is being made by trying to communicate with every data logger inside the network. The lack of any response from a data logger is interpreted as an error and using the code of the data logger's microcontroller, it is possible to find its exact position inside the dam infrastructure. The novelty of this procedure is the fact that it completely automates the diagnose procedure, which, until now, was made visually by checking every data logger.
 

2014-10-24
Chen, Simin.  2012.  Declarative Access Policies Based on Objects, Relationships, and States. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :99–100.
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.
2015-01-12
Simin Chen.  2012.  Declarative Access Policies based on Objects, Relationships, and States. SPLASH '12 Proceedings of the 3rd annual conference on Systems, programming, and applications: software for humanity.

Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.