Biblio

Filters: Keyword is Cognitive science  [Clear All Filters]
2022-01-12
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
Li, Nianyu, Cámara, Javier, Garlan, David, Schmerl, Bradley, Jin, Zhi.  2021.  Hey! Preparing Humans to do Tasks in Self-adaptive Systems. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Many self-adaptive systems benefit from human involvement, where human operators can complement the capabilities of systems (e.g., by supervising decisions, or performing adaptations and tasks involving physical changes that cannot be automated). However, insufficient preparation (e.g., lack of task context comprehension) may hinder the effectiveness of human involvement, especially when operators are unexpectedly interrupted to perform a new task. Preparatory notification of a task provided in advance can sometimes help human operators focus their attention on the forthcoming task and understand its context before task execution, hence improving effectiveness. Nevertheless, deciding when to use preparatory notification as a tactic is not obvious and entails considering different factors that include uncertainties induced by human operator behavior (who might ignore the notice message), human attributes (e.g., operator training level), and other information that refers to the state of the system and its environment. In this paper, informed by work in cognitive science on human attention and context management, we introduce a formal framework to reason about the usage of preparatory notifications in self-adaptive systems involving human operators. Our framework characterizes the effects of managing attention via task notification in terms of task context comprehension. We also build on our framework to develop an automated probabilistic reasoning technique able to determine when and in what form a preparatory notification tactic should be used to optimize system goals. We illustrate our approach in a representative scenario of human-robot collaborative goods delivery.
2021-03-29
Anell, S., Gröber, L., Krombholz, K..  2020.  End User and Expert Perceptions of Threats and Potential Countermeasures. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :230—239.

Experts often design security and privacy technology with specific use cases and threat models in mind. In practice however, end users are not aware of these threats and potential countermeasures. Furthermore, mis-conceptions about the benefits and limitations of security and privacy technology inhibit large-scale adoption by end users. In this paper, we address this challenge and contribute a qualitative study on end users' and security experts' perceptions of threat models and potential countermeasures. We follow an inductive research approach to explore perceptions and mental models of both security experts and end users. We conducted semi-structured interviews with 8 security experts and 13 end users. Our results suggest that in contrast to security experts, end users neglect acquaintances and friends as attackers in their threat models. Our findings highlight that experts value technical countermeasures whereas end users try to implement trust-based defensive methods.

Distler, V., Lallemand, C., Koenig, V..  2020.  Making Encryption Feel Secure: Investigating how Descriptions of Encryption Impact Perceived Security. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :220—229.

When communication about security to end users is ineffective, people frequently misinterpret the protection offered by a system. The discrepancy between the security users perceive a system to have and the actual system state can lead to potentially risky behaviors. It is thus crucial to understand how security perceptions are shaped by interface elements such as text-based descriptions of encryption. This article addresses the question of how encryption should be described to non-experts in a way that enhances perceived security. We tested the following within-subject variables in an online experiment (N=309): a) how to best word encryption, b) whether encryption should be described with a focus on the process or outcome, or both c) whether the objective of encryption should be mentioned d) when mentioning the objective of encryption, how to best describe it e) whether a hash should be displayed to the user. We also investigated the role of context (between subjects). The verbs "encrypt" and "secure" performed comparatively well at enhancing perceived security. Overall, participants stated that they felt more secure not knowing about the objective of encryption. When it is necessary to state the objective, positive wording of the objective of encryption worked best. We discuss implications and why using these results to design for perceived lack of security might be of interest as well. This leads us to discuss ethical concerns, and we give guidelines for the design of user interfaces where encryption should be communicated to end users.

2020-04-13
Dechand, Sergej, Naiakshina, Alena, Danilova, Anastasia, Smith, Matthew.  2019.  In Encryption We Don’t Trust: The Effect of End-to-End Encryption to the Masses on User Perception. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :401–415.
With WhatsApp's adoption of the Signal Protocol as its default, end-to-end encryption by the masses happened almost overnight. Unlike iMessage, WhatsApp notifies users that encryption is enabled, explicitly informing users about improved privacy. This rare feature gives us an opportunity to study people's understandings and perceptions of secure messaging pre-and post-mass messenger encryption (pre/post-MME). To study changes in perceptions, we compared the results of two mental models studies: one conducted in 2015 pre-MME and one in 2017 post-MME. Our primary finding is that users do not trust encryption as currently offered. When asked about encryption in the study, most stated that they had heard of encryption, but only a few understood the implications, even on a high level. Their consensus view was that no technical solution to stop skilled attackers from getting their data exists. Even with a major development, such as WhatsApp rolling out end-to-end encryption, people still do not feel well protected by their technology. Surprisingly, despite WhatsApp's end-to-end security info messages and the high media attention, the majority of the participants were not even aware of encryption. Most participants had an almost correct threat model, but don't believe that there is a technical solution to stop knowledgeable attackers to read their messages. Using technology made them feel vulnerable.
2020-12-01
Xie, Y., Bodala, I. P., Ong, D. C., Hsu, D., Soh, H..  2019.  Robot Capability and Intention in Trust-Based Decisions Across Tasks. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :39—47.

In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots - inferred capability and intention - and their relationship to overall trust and eventual decisions. In particular, we examine delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.

Poulsen, A., Burmeister, O. K., Tien, D..  2018.  Care Robot Transparency Isn't Enough for Trust. 2018 IEEE Region Ten Symposium (Tensymp). :293—297.

A recent study featuring a new kind of care robot indicated that participants expect a robot's ethical decision-making to be transparent to develop trust, even though the same type of `inspection of thoughts' isn't expected of a human carer. At first glance, this might suggest that robot transparency mechanisms are required for users to develop trust in robot-made ethical decisions. But the participants were found to desire transparency only when they didn't know the specifics of a human-robot social interaction. Humans trust others without observing their thoughts, which implies other means of determining trustworthiness. The study reported here suggests that the method is social interaction and observation, signifying that trust is a social construct. Moreover, that `social determinants of trust' are the transparent elements. This socially determined behaviour draws on notions of virtue ethics. If a caregiver (nurse or robot) consistently provides good, ethical care, then patients can trust that caregiver to do so often. The same social determinants may apply to care robots and thus it ought to be possible to trust them without the ability to see their thoughts. This study suggests why transparency mechanisms may not be effective in helping to develop trust in care robot ethical decision-making. It suggests that roboticists need to build sociable elements into care robots to help patients to develop patient trust in the care robot's ethical decision-making.

2017-12-12
Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., Gamboa, C..  2017.  A scientific data provenance harvester for distributed applications. 2017 New York Scientific Data Summit (NYSDS). :1–9.

Data provenance provides a way for scientists to observe how experimental data originates, conveys process history, and explains influential factors such as experimental rationale and associated environmental factors from system metrics measured at runtime. The US Department of Energy Office of Science Integrated end-to-end Performance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) project has developed a provenance harvester that is capable of collecting observations from file based evidence typically produced by distributed applications. To achieve this, file based evidence is extracted and transformed into an intermediate data format inspired in part by W3C CSV on the Web recommendations, called the Harvester Provenance Application Interface (HAPI) syntax. This syntax provides a general means to pre-stage provenance into messages that are both human readable and capable of being written to a provenance store, Provenance Environment (ProvEn). HAPI is being applied to harvest provenance from climate ensemble runs for Accelerated Climate Modeling for Energy (ACME) project funded under the U.S. Department of Energy's Office of Biological and Environmental Research (BER) Earth System Modeling (ESM) program. ACME informally provides provenance in a native form through configuration files, directory structures, and log files that contain success/failure indicators, code traces, and performance measurements. Because of its generic format, HAPI is also being applied to harvest tabular job management provenance from Belle II DIRAC scheduler relational database tables as well as other scientific applications that log provenance related information.

2017-03-07
Aggarwal, P., Maqbool, Z., Grover, A., Pammi, V. S. C., Singh, S., Dutt, V..  2015.  Cyber security: A game-theoretic analysis of defender and attacker strategies in defacing-website games. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.

The rate at which cyber-attacks are increasing globally portrays a terrifying picture upfront. The main dynamics of such attacks could be studied in terms of the actions of attackers and defenders in a cyber-security game. However currently little research has taken place to study such interactions. In this paper we use behavioral game theory and try to investigate the role of certain actions taken by attackers and defenders in a simulated cyber-attack scenario of defacing a website. We choose a Reinforcement Learning (RL) model to represent a simulated attacker and a defender in a 2×4 cyber-security game where each of the 2 players could take up to 4 actions. A pair of model participants were computationally simulated across 1000 simulations where each pair played at most 30 rounds in the game. The goal of the attacker was to deface the website and the goal of the defender was to prevent the attacker from doing so. Our results show that the actions taken by both the attackers and defenders are a function of attention paid by these roles to their recently obtained outcomes. It was observed that if attacker pays more attention to recent outcomes then he is more likely to perform attack actions. We discuss the implication of our results on the evolution of dynamics between attackers and defenders in cyber-security games.