Biblio

Filters: Keyword is home automation  [Clear All Filters]
2018-01-23
Mathew, S., Saranya, G..  2017.  Advanced biometric home security system using digital signature and DNA cryptography. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–4.

In today's growing concern for home security, we have developed an advanced security system using integrated digital signature and DNA cryptography. The digital signature is formed using multi-feature biometric traits which includes both fingerprint as well as iris image. We further increase the security by using DNA cryptography which is embedded on a smart card. In order to prevent unauthorized access manually or digitally, we use geo-detection which compares the unregistered devices location with the user's location using any of their personal devices such as smart phone or tab.

2018-05-30
Chang, S. H., William, T., Wu, W. Z., Cheng, B. C., Chen, H., Hsu, P. H..  2017.  Design of an Authentication and Key Management System for a Smart Meter Gateway in AMI. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). :1–2.

By applying power usage statistics from smart meters, users are able to save energy in their homes or control smart appliances via home automation systems. However, owing to security and privacy concerns, it is recommended that smart meters (SM) should not have direct communication with smart appliances. In this paper, we propose a design for a smart meter gateway (SMGW) associated with a two-phase authentication mechanism and key management scheme to link a smart grid with smart appliances. With placement of the SMGW, we can reduce the design complexity of SMs as well as enhance the strength of security.

2018-02-02
Anderson, E. C., Okafor, K. C., Nkwachukwu, O., Dike, D. O..  2017.  Real time car parking system: A novel taxonomy for integrated vehicular computing. 2017 International Conference on Computing Networking and Informatics (ICCNI). :1–9.
Automation of real time car parking system (RTCPS) using mobile cloud computing (MCC) and vehicular networking (VN) has given rise to a novel concept of integrated communication-computing platforms (ICCP). The aim of ICCP is to evolve an effective means of addressing challenges such as improper parking management scheme, traffic congestion in parking lots, insecurity of vehicles (safety applications), and other Infrastructure-to-Vehicle (I2V) services for providing data dissemination and content delivery services to connected Vehicular Clients (VCs). Edge (parking lot based) Fog computing (EFC) through road side sensor based monitoring is proposed to achieve ICCP. A real-time cloud to vehicular clients (VCs) in the context of smart car parking system (SCPS) which satisfies deterministic and non-deterministic constraints is introduced. Vehicular cloud computing (VCC) and intra-Edge-Fog node architecture is presented for ICCP. This is targeted at distributed mini-sized self-energized Fog nodes/data centers, placed between distributed remote cloud and VCs. The architecture processes data-disseminated real-time services to the connected VCs. The work built a prototype testbed comprising a black box PSU, Arduino IoT Duo, GH-311RT ultrasonic distance sensor and SHARP 2Y0A21 passive infrared sensor for vehicle detection; LinkSprite 2MP UART JPEG camera module, SD card module, RFID card reader, RDS3115 metal gear servo motors, FPM384 fingerprint scanner, GSM Module and a VCC web portal. The testbed functions at the edge of the vehicular network and is connected to the served VCs through Infrastructure-to-Vehicular (I2V) TCP/IP-based single-hop mobile links. This research seeks to facilitate urban renewal strategies and highlight the significance of ICCP prototype testbed. Open challenges and future research directions are discussed for an efficient VCC model which runs on networked fog centers (NetFCs).
2017-06-27
Obermaier, Johannes, Hutle, Martin.  2016.  Analyzing the Security and Privacy of Cloud-based Video Surveillance Systems. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :22–28.

In the area of the Internet of Things, cloud-based camera surveillance systems are ubiquitously available for industrial and private environments. However, the sensitive nature of the surveillance use case imposes high requirements on privacy/confidentiality, authenticity, and availability of such systems. In this work, we investigate how currently available mass-market camera systems comply with these requirements. Considering two attacker models, we test the cameras for weaknesses and analyze for their implications. We reverse-engineered the security implementation and discovered several vulnerabilities in every tested system. These weaknesses impair the users' privacy and, as a consequence, may also damage the camera system manufacturer's reputation. We demonstrate how an attacker can exploit these vulnerabilities to blackmail users and companies by denial-of-service attacks, injecting forged video streams, and by eavesdropping private video data - even without physical access to the device. Our analysis shows that current systems lack in practice the necessary care when implementing security for IoT devices.

2016-02-15
Waqar Ahmad, Joshua Sunshine, Christian Kästner, Adam Wynne.  2015.  Enforcing Fine-Grained Security and Privacy Policies in an Ecosystem within an Ecosystem. Systems, Programming, Languages and Applications: Software for Humanity (SPLASH).

Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users' sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permission in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.

2017-03-08
Pienaar, J. P., Fisher, R. M., Hancke, G. P..  2015.  Smartphone: The key to your connected smart home. 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). :999–1004.

Automation systems are gaining popularity around the world. The use of these powerful technologies for home security has been proposed and some systems have been developed. Other implementations see the user taking a central role in providing and receiving updates to the system. We propose a system making use of an Android based smartphone as the user control point. Our Android application allows for dual factor (facial and secret pin) based authentication in order to protect the privacy of the user. The system successfully implements facial recognition on the limited resources of a smartphone by making use of the Eigenfaces algorithm. The system we created was designed for home automation but makes use of technologies that allow it to be applied within any environment. This opens the possibility for more research into dual factor authentication and the architecture of our system provides a blue print for the implementation of home based automation systems. This system with minimal modifications can be applied within an industrial application.

2015-05-05
Shahgoshtasbi, D., Jamshidi, M.M..  2014.  A New Intelligent Neuro #x2013;Fuzzy Paradigm for Energy-Efficient Homes. Systems Journal, IEEE. 8:664-673.

Demand response (DR), which is the action voluntarily taken by a consumer to adjust amount or timing of its energy consumption, has an important role in improving energy efficiency. With DR, we can shift electrical load from peak demand time to other periods based on changes in price signal. At residential level, automated energy management systems (EMS) have been developed to assist users in responding to price changes in dynamic pricing systems. In this paper, a new intelligent EMS (iEMS) in a smart house is presented. It consists of two parts: a fuzzy subsystem and an intelligent lookup table. The fuzzy subsystem is based on its fuzzy rules and inputs that produce the proper output for the intelligent lookup table. The second part, whose core is a new model of an associative neural network, is able to map inputs to desired outputs. The structure of the associative neural network is presented and discussed. The intelligent lookup table takes three types of inputs that come from the fuzzy subsystem, outside sensors, and feedback outputs. Whatever is trained in this lookup table are different scenarios in different conditions. This system is able to find the best energy-efficiency scenario in different situations.

2015-04-30
Bovet, G., Hennebert, J..  2014.  Distributed Semantic Discovery for Web-of-Things Enabled Smart Buildings. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Nowadays, our surrounding environment is more and more scattered with various types of sensors. Due to their intrinsic properties and representation formats, they form small islands isolated from each other. In order to increase interoperability and release their full capabilities, we propose to represent devices descriptions including data and service invocation with a common model allowing to compose mashups of heterogeneous sensors. Pushing this paradigm further, we also propose to augment service descriptions with a discovery protocol easing automatic assimilation of knowledge. In this work, we describe the architecture supporting what can be called a Semantic Sensor Web-of-Things. As proof of concept, we apply our proposal to the domain of smart buildings, composing a novel ontology covering heterogeneous sensing, actuation and service invocation. Our architecture also emphasizes on the energetic aspect and is optimized for constrained environments.

2015-05-01
Tsado, Y., Lund, D., Gamage, K..  2014.  Resilient wireless communication networking for Smart grid BAN. Energy Conference (ENERGYCON), 2014 IEEE International. :846-851.

The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.