Biblio
With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.
In this paper, we propose principles of information control and sharing that support ORCON (ORiginator COntrolled access control) models while simultaneously improving components of confidentiality, availability, and integrity needed to inherently support, when needed, responsibility to share policies, rapid information dissemination, data provenance, and data redaction. This new paradigm of providing unfettered and unimpeded access to information by authorized users, while at the same time, making access by unauthorized users impossible, contrasts with historical approaches to information sharing that have focused on need to know rather than need to (or responsibility to) share.
In the past decade, the information security and threat landscape has grown significantly making it difficult for a single defender to defend against all attacks at the same time. This called for introducing information sharing, a paradigm in which threat indicators are shared in a community of trust to facilitate defenses. Standards for representation, exchange, and consumption of indicators are proposed in the literature, although various issues are undermined. In this paper, we take the position of rethinking information sharing for actionable intelligence, by highlighting various issues that deserve further exploration. We argue that information sharing can benefit from well-defined use models, threat models, well-understood risk by measurement and robust scoring, well-understood and preserved privacy and quality of indicators and robust mechanism to avoid free riding behavior of selfish agents. We call for using the differential nature of data and community structures for optimizing sharing designs and structures.
Information security can benefit from real-time cyber threat indicator sharing, in which companies and government agencies share their knowledge of emerging cyberattacks to benefit their sector and society at large. As attacks become increasingly sophisticated by exploiting behavioral dimensions of human computer operators, there is an increased risk to systems that store personal information. In addition, risk increases as individuals blur the boundaries between workplace and home computing (e.g., using workplace computers for personal reasons). This paper describes an architecture to leverage individual perceptions of privacy risk to compute privacy risk scores over cyber threat indicator data. Unlike security risk, which is a risk to a particular system, privacy risk concerns an individual's personal information being accessed and exploited. The architecture integrates tools to extract information entities from textual threat reports expressed in the STIX format and privacy risk estimates computed using factorial vignettes to survey individual risk perceptions. The architecture aims to optimize for scalability and adaptability to achieve real-time risk scoring.
The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.
In this work we propose a model for conducting efficient and mutually beneficial information sharing between two competing entities, focusing specifically on software vulnerability sharing. We extend the two-stage game-theoretic model proposed by Khouzani et al. [18] for bug sharing, addressing two key features: we allow security information to be associated with different categories and severities, but also remove a large proportion of player homogeneity assumptions the previous work makes. We then analyse how these added degrees of realism affect the trading dynamics of the game. Secondly, we develop a new private set operation (PSO) protocol that enables the removal of the trusted mediation requirement. The PSO functionality allows for bilateral trading between the two entities up to a mutually agreed threshold on the value of information shared, keeping all other input information secret. The protocol scales linearly with set sizes and we give an implementation that establishes the practicality of the design for varying input parameters. The resulting model and protocol provide a framework for practical and secure information sharing between competing entities.
Internet infrastructure developments and the rise of the IoT Socio-Technical Systems (STS) have frequently generated more unsecure protocols to facilitate the rapid intercommunication between the plethoras of IoT devices. Whereas, current development of the IoT has been mainly focused on enabling and effectively meeting the functionality requirement of digital-enabled enterprises we have seen scant regard to their IA architecture, marginalizing system resilience with blatant afterthoughts to cyber defence. Whilst interconnected IoT devices do facilitate and expand information sharing; they further increase of risk exposure and potential loss of trust to their Socio-Technical Systems. A change in the IoT paradigm is needed to enable a security-first mind-set; if the trusted sharing of information built upon dependable resilient growth of IoT is to be established and maintained. We argue that Information Assurance is paramount to the success of IoT, specifically its resilience and dependability to continue its safe support for our digital economy.
Nowadays, both the amount of cyberattacks and their sophistication have considerably increased, and their prevention concerns many organizations. Cooperation by means of information sharing is a promising strategy to address this problem, but unfortunately it poses many challenges. Indeed, looking for a win-win environment is not straightforward and organizations are not properly motivated to share information. This work presents a model to analyse the benefits and drawbacks of information sharing among organizations that present a certain level of dependency. The proposed model applies functional dependency network analysis to emulate attacks propagation and game theory for information sharing management. We present a simulation framework implementing the model that allows for testing different sharing strategies under several network and attack settings. Experiments using simulated environments show how the proposed model provides insights on which conditions and scenarios are beneficial for information sharing.
The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.
With the increasing popularity of wearable devices, information becomes much easily available. However, personal information sharing still poses great challenges because of privacy issues. We propose an idea of Visual Human Signature (VHS) which can represent each person uniquely even captured in different views/poses by wearable cameras. We evaluate the performance of multiple effective modalities for recognizing an identity, including facial appearance, visual patches, facial attributes and clothing attributes. We propose to emphasize significant dimensions and do weighted voting fusion for incorporating the modalities to improve the VHS recognition. By jointly considering multiple modalities, the VHS recognition rate can reach by 51% in frontal images and 48% in the more challenging environment and our approach can surpass the baseline with average fusion by 25% and 16%. We also introduce Multiview Celebrity Identity Dataset (MCID), a new dataset containing hundreds of identities with different view and clothing for comprehensive evaluation.
The Polish Power System is becoming increasingly more dependent on Information and Communication Technologies which results in its exposure to cyberattacks, including the evolved and highly sophisticated threats such as Advanced Persistent Threats or Distributed Denial of Service attacks. The most exposed components are SCADA systems in substations and Distributed Control Systems in power plants. When addressing this situation the usual cyber security technologies are prerequisite, but not sufficient. With the rapidly evolving cyber threat landscape the use of partnerships and information sharing has become critical. However due to several anonymity concerns the relevant stakeholders may become reluctant to exchange sensitive information about security incidents. In the paper a multi-agent architecture is presented for the Polish Power System which addresses the anonymity concerns.
This paper presents a middleware solution to secure data and network in the e-healthcare system. The e-Healthcare Systems are a primary concern due to the easiest deployment area accessibility of the sensor devices. Furthermore, they are often interacting closely in cooperation with the physical environment and the surrounding people, where such exposure increases security vulnerabilities in cases of improperly managed security of the information sharing among different healthcare organizations. Hence, healthcare-specific security standards such as authentication, data integrity, system security and internet security are used to ensure security and privacy of patients' information. This paper discusses security threats on e-Healthcare Systems where an attacker can access both data and network using masquerade attack Moreover, an efficient and cost effective approach middleware solution is discussed for the delivery of secure services.
Recent events have brought to light the increasingly intertwined nature of modern infrastructures. As a result much effort is being put towards protecting these vital infrastructures without which modern society suffers dire consequences. These infrastructures, due to their intricate nature, behave in complex ways. Improving their resilience and understanding their behavior requires a collaborative effort between the private sector that operates these infrastructures and the government sector that regulates them. This collaboration in the form of information sharing requires a new type of information network whose goal is in two parts to enable infrastructure operators share status information among interdependent infrastructure nodes and also allow for the sharing of vital information concerning threats and other contingencies in the form of alerts. A communication model that meets these requirements while maintaining flexibility and scalability is presented in this paper.
Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.
Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.
This paper reports the results and findings of a historical analysis of open source intelligence (OSINT) information (namely Twitter data) surrounding the events of the September 11, 2012 attack on the US Diplomatic mission in Benghazi, Libya. In addition to this historical analysis, two prototype capabilities were combined for a table top exercise to explore the effectiveness of using OSINT combined with a context aware handheld situational awareness framework and application to better inform potential responders as the events unfolded. Our experience shows that the ability to model sentiment, trends, and monitor keywords in streaming social media, coupled with the ability to share that information to edge operators can increase their ability to effectively respond to contingency operations as they unfold.