Biblio
Filters: Keyword is Resiliency [Clear All Filters]
.
2020. Singular Value Decomposition (SVD) based Image Tamper Detection Scheme. 2020 International Conference on Inventive Computation Technologies (ICICT). :695—699.
Image authentication techniques are basically used to check whether the received document is accurate or actual as it was transmitted by the source node or not. Image authentication ensures the integrity of the digital images and identify the ownership of the copyright of the digital images. Singular Value Decomposition (SVD) is method based on spatial domain which is used to extract important features from an image. SVD function decomposes an image into three matrices (U, S, V), the S matrix is a diagonal matrix constitutes singular values. These values are important features of that particular image. The quick response code features are utilized to create QR code from the extracted values. The evaluations produced represents that this designed method is better in producing authenticated image as compared to existing schemes.
.
2020. Situational Awareness in Distribution Grid Using Micro-PMU Data: A Machine Learning Approach. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–1.
The recent development of distribution-level phasor measurement units, a.k.a. micro-PMUs, has been an important step towards achieving situational awareness in power distribution networks. The challenge however is to transform the large amount of data that is generated by micro-PMUs to actionable information and then match the information to use cases with practical value to system operators. This open problem is addressed in this paper. First, we introduce a novel data-driven event detection technique to pick out valuable portion of data from extremely large raw micro-PMU data. Subsequently, a datadriven event classifier is developed to effectively classify power quality events. Importantly, we use field expert knowledge and utility records to conduct an extensive data-driven event labeling. Moreover, certain aspects from event detection analysis are adopted as additional features to be fed into the classifier model. In this regard, a multi-class support vector machine (multi-SVM) classifier is trained and tested over 15 days of real-world data from two micro-PMUs on a distribution feeder in Riverside, CA. In total, we analyze 1.2 billion measurement points, and 10,700 events. The effectiveness of the developed event classifier is compared with prevalent multi-class classification methods, including k-nearest neighbor method as well as decision-tree method. Importantly, two real-world use-cases are presented for the proposed data analytics tools, including remote asset monitoring and distribution-level oscillation analysis.
.
2020. Situational Awareness of Power System Stabilizers’ Performance in Energy Control Centers. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Undamped power system oscillations are detrimental to stable and security of the electric grid. Historically, poorly damped low frequency rotor oscillations have caused system blackouts or brownouts. It is required to monitor the oscillation damping controllers such as power system stabilizers' (PSS) performance at energy control centers as well as at power plant control centers. Phasor measurement units (PMUs) based time response and frequency response information on PSS performance is collected. A fuzzy logic system is developed to combine the time and frequency response information to derive the situational awareness on PSS performance on synchronous generator's oscillation(s). A two-area four-machine benchmark power system is simulated on a real-time digital simulator platform. Fuzzy logic system developed is evaluated for different system disturbances. Situational awareness on PSS performance on synchronous generator's oscillation(s) allows the control center operator to enhance the power system operation more stable and secure.
.
2020. SM9 Digital Signature with Non-Repudiation. 2020 16th International Conference on Computational Intelligence and Security (CIS). :356–361.
SM9 is an identity-based cryptography algorithm published by the State Cryptography Administration of China. With SM9, a user's private key for signing is generated by a central system called key generation center (KGC). When the owner of the private key wants to shirk responsibility by denying that the signature was generated by himself, he can claim that the operator of KGC forged the signature using the generated private key. To address this issue, in this paper, two schemes of SM9 digital signature with non-repudiation are proposed. With the proposed schemes, the user's private key for signing is collaboratively generated by two separate components, one of which is deployed in the private key service provider's site while the other is deployed in the user's site. The private key can only be calculated in the user's site with the help of homomorphic encryption. Therefore, only the user can obtain the private key and he cannot deny that the signature was generated by himself. The proposed schemes can achieve the non-repudiation of SM9 digital signature.
.
2020. A Small Sample DDoS Attack Detection Method Based on Deep Transfer Learning. 2020 International Conference on Computer Communication and Network Security (CCNS). :47—50.
When using deep learning for DDoS attack detection, there is a general degradation in detection performance due to small sample size. This paper proposes a small-sample DDoS attack detection method based on deep transfer learning. First, deep learning techniques are used to train several neural networks that can be used for transfer in DDoS attacks with sufficient samples. Then we design a transferability metric to compare the transfer performance of different networks. With this metric, the network with the best transfer performance can be selected among the four networks. Then for a small sample of DDoS attacks, this paper demonstrates that the deep learning detection technique brings deterioration in performance, with the detection performance dropping from 99.28% to 67%. Finally, we end up with a 20.8% improvement in detection performance by deep transfer of the 8LANN network in the target domain. The experiment shows that the detection method based on deep transfer learning proposed in this paper can well improve the performance deterioration of deep learning techniques for small sample DDoS attack detection.
.
2020. Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
.
2020. Smart Building Risk Assessment Case Study: Challenges, Deficiencies and Recommendations. 2020 16th European Dependable Computing Conference (EDCC). :59—64.
Inter-networked control systems make smart buildings increasingly efficient but can lead to severe operational disruptions and infrastructure damage. It is vital the security state of smart buildings is properly assessed so that thorough and cost effective risk management can be established. This paper uniquely reports on an actual risk assessment performed in 2018 on one of the world's most densely monitored, state-of-the-art, smart buildings. From our observations, we suggest that current practice may be inadequate due to a number of challenges and deficiencies, including the lack of a recognised smart building risk assessment methodology. As a result, the security posture of many smart buildings may not be as robust as their risk assessments suggest. Crucially, we highlight a number of key recommendations for a more comprehensive risk assessment process for smart buildings. As a whole, we believe this practical experience report will be of interest to a range of smart building stakeholders.
.
2020. Smart Security Audit: Reinforcement Learning with a Deep Neural Network Approximator. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
A significant challenge in modern computer security is the growing skill gap as intruder capabilities increase, making it necessary to begin automating elements of penetration testing so analysts can contend with the growing number of cyber threats. In this paper, we attempt to assist human analysts by automating a single host penetration attack. To do so, a smart agent performs different attack sequences to find vulnerabilities in a target system. As it does so, it accumulates knowledge, learns new attack sequences and improves its own internal penetration testing logic. As a result, this agent (AgentPen for simplicity) is able to successfully penetrate hosts it has never interacted with before. A computer security administrator using this tool would receive a comprehensive, automated sequence of actions leading to a security breach, highlighting potential vulnerabilities, and reducing the amount of menial tasks a typical penetration tester would need to execute. To achieve autonomy, we apply an unsupervised machine learning algorithm, Q-learning, with an approximator that incorporates a deep neural network architecture. The security audit itself is modelled as a Markov Decision Process in order to test a number of decision-making strategies and compare their convergence to optimality. A series of experimental results is presented to show how this approach can be effectively used to automate penetration testing using a scalable, i.e. not exhaustive, and adaptive approach.
.
2020. SMS-Based Offline Mobile Device Security System. 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE). :1–7.
Mobile Device Security is an important factor as all the user's sensitive information is stored on the mobile device. The problem of mobile devices getting lost or stolen has only been increasing. There are various systems which provide Online Mobile Device Security which require internet to perform their required functions. Our proposed system SMS Based Offline Mobile Device Security System provides mobile device users with a wide range of security features that help protect the mobile device from theft and also acts as an assistant that helps the users in any problems they may face in their day-to-day lives. The project aims to develop a mobile security system that will allow the user to manipulate his mobile device from any other device through SMS which can be used to get contact information from the user's mobile device remotely, help find the phone by maximizing the volume and playing a tone, trace the current location of the mobile device, get the IMEI No of the device, lock the device, send a message that will be converted to speech and played on the user's mobile device, call forwarding, message forwarding and various other features. It also has an additional security feature that will detect a sim card change and send the new SIM card mobile no to the recovery mobile numbers specified during initial setup automatically. Hence, the user will be able to manipulate his phone even after the SIM card has been changed. Therefore, the SMS-Based Offline Mobile Device Security System provides much more security for the mobile device than the existing online device security methods.
.
2020. SMTrust: Proposing Trust-Based Secure Routing Protocol for RPL Attacks for IoT Applications. 2020 International Conference on Computational Intelligence (ICCI). :305–310.
With large scale generation and exchange of data between IoT devices and constrained IoT security to protect data communication, it becomes easy for attackers to compromise data routes. In IoT networks, IPv6 Routing Protocol is the de facto routing protocol for Low Power and Lossy Networks (RPL). RPL offers limited security against several RPL-specific and WSN-inherited attacks in IoT applications. Additionally, IoT devices are limited in memory, processing, and power to operate properly using the traditional Internet and routing security solutions. Several mitigation schemes for the security of IoT networks and routing, have been proposed including Machine Learning-based, IDS-based, and Trust-based approaches. In existing trust-based methods, mobility of nodes is not considered at all or its insufficient for mobile sink nodes, specifically for security against RPL attacks. This research work proposes a conceptual design, named SMTrust, for security of routing protocol in IoT, considering the mobility-based trust metrics. The proposed solution intends to provide defense against popular RPL attacks, for example, Blackhole, Greyhole, Rank, Version Number attacks, etc. We believe that SMTrust shall provide better network performance for attacks detection accuracy, mobility and scalability as compared to existing trust models, such as, DCTM-RPL and SecTrust-RPL. The novelty of our solution is that it considers the mobility metrics of the sensor nodes as well as the sink nodes, which has not been addressed by the existing models. This consideration makes it suitable for mobile IoT environment. The proposed design of SMTrust, as secure routing protocol, when embedded in RPL, shall ensure confidentiality, integrity, and availability among the sensor nodes during routing process in IoT communication and networks.
.
2020. Software Development of Electronic Digital Signature Generation at Institution Electronic Document Circulation. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
the purpose of this paper is investigation of existing approaches to formation of electronic digital signatures, as well as the possibility of software developing for electronic signature generation at electronic document circulation of institution. The article considers and analyzes the existing algorithms for generating and processing electronic signatures. Authors propose the model for documented information exchanging in institution, including cryptographic module and secure key storage, blockchain storage of electronic signatures, central web-server and web-interface. Examples of the developed software are demonstrated, and recommendations are given for its implementation, integration and using in different institutions.
.
2020. Solving the Interdependency Problem: A Secure Virtual Machine Allocation Method Relying on the Attacker’s Efficiency and Coverage. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :440—449.
Cloud computing dominates the information communication and technology landscape despite the presence of lingering security issues such as the interdependency problem. The latter is a co-residence conundrum where the attacker successfully compromises his target virtual machine by first exploiting the weakest (in terms of security) virtual machine that is hosted in the same server. To tackle this issue, we propose a novel virtual machine allocation policy that is based on the attacker's efficiency and coverage. By default, our allocation policy considers all legitimate users as attackers and then proceeds to host the users' virtual machines to the server where their efficiency and/or coverage are the smallest. Our simulation results show that our proposal performs better than the existing allocation policies that were proposed to tackle the same issue, by reducing the attacker's possibilities to zero and by using between 30 - 48% less hosts.
.
2020. On Some Universally Good Fractional Repetition Codes. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :404—411.
Data storage in Distributed Storage Systems (DSS) is a multidimensional optimization problem. Using network coding, one wants to provide reliability, scalability, security, reduced storage overhead, reduced bandwidth for repair and minimal disk I/O in such systems. Advances in the construction of optimal Fractional Repetition (FR) codes, a smart replication of encoded packets on n nodes which also provides optimized disk I/O and where a node failure can be repaired by contacting some specific set of nodes in the system, is in high demand. An attempt towards the construction of universally good FR codes using three different approaches is addressed in this work. In this paper, we present that the code constructed using the partial regular graph for heterogeneous DSS, where the number of packets on each node is different, is universally good. Further, we also encounter the list of parameters for which the ring construction and the T-construction results in universally good codes. In addition, we evaluate the FR code constructions meeting the minimum distance bound.
.
2020. A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
.
2020. Spectrum Occupancy Prediction Exploiting Time and Frequency Correlations Through 2D-LSTM. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
The identification of spectrum opportunities is a pivotal requirement for efficient spectrum utilization in cognitive radio systems. Spectrum prediction offers a convenient means for revealing such opportunities based on the previously obtained occupancies. As spectrum occupancy states are correlated over time, spectrum prediction is often cast as a predictable time-series process using classical or deep learning-based models. However, this variety of methods exploits time-domain correlation and overlooks the existing correlation over frequency. In this paper, differently from previous works, we investigate a more realistic scenario by exploiting correlation over time and frequency through a 2D-long short-term memory (LSTM) model. Extensive experimental results show a performance improvement over conventional spectrum prediction methods in terms of accuracy and computational complexity. These observations are validated over the real-world spectrum measurements, assuming a frequency range between 832-862 MHz where most of the telecom operators in Turkey have private uplink bands.
.
2020. Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.
.
2020. SPFA: SFA on Multiple Persistent Faults. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :49–56.
For classical fault analysis, a transient fault is required to be injected during runtime, e.g., only at a specific round. Instead, Persistent Fault Analysis (PFA) introduces a powerful class of fault attacks that allows for a fault to be present throughout the whole execution. One limitation of original PFA as introduced by Zhang et al. at CHES'18 is that the adversary needs know (or brute-force) the faulty values prior to the analysis. While this was addressed at a follow-up work at CHES'20, the solution is only applicable to a single faulty value. Instead, we use the potency of Statistical Fault Analysis (SFA) in the persistent fault setting, presenting Statistical Persistent Fault Analysis (SPFA) as a more general approach of PFA. As a result, any or even a multitude of unknown faults that cause an exploitable bias in the targeted round can be used to recover the cipher's secret key. Indeed, the undesired faults in the other rounds that occur due the persistent nature of the attack converge to a uniform distribution as required by SFA. We verify the effectiveness of our attack against LED and AES.
.
2020. Is Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking and Deep Neural Networks 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Spiking Neural Networks (SNNs) claim to present many advantages in terms of biological plausibility and energy efficiency compared to standard Deep Neural Networks (DNNs). Recent works have shown that DNNs are vulnerable to adversarial attacks, i.e., small perturbations added to the input data can lead to targeted or random misclassifications. In this paper, we aim at investigating the key research question: "Are SNNs secure?" Towards this, we perform a comparative study of the security vulnerabilities in SNNs and DNNs w.r.t. the adversarial noise. Afterwards, we propose a novel black-box attack methodology, i.e., without the knowledge of the internal structure of the SNN, which employs a greedy heuristic to automatically generate imperceptible and robust adversarial examples (i.e., attack images) for the given SNN. We perform an in-depth evaluation for a Spiking Deep Belief Network (SDBN) and a DNN having the same number of layers and neurons (to obtain a fair comparison), in order to study the efficiency of our methodology and to understand the differences between SNNs and DNNs w.r.t. the adversarial examples. Our work opens new avenues of research towards the robustness of the SNNs, considering their similarities to the human brain's functionality.
.
2020. SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips. 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). :1–6.
Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.
.
2020. Statistical Techniques-Based Characterization of FDIA in Smart Grids Considering Grid Contingencies. 2020 International Conference on Smart Grids and Energy Systems (SGES). :83–88.
False data injection attack (FDIA) is a real threat to smart grids due to its wide range of vulnerabilities and impacts. Designing a proper detection scheme for FDIA is the 1stcritical step in defending the attack in smart grids. In this paper, we investigate two main statistical techniques-based approaches in this regard. The first is based on the principal component analysis (PCA), and the second is based on the canonical correlation analysis (CCA). The test cases illustrate a better characterization performance of FDIA using CCA compared to the PCA. Further, CCA provides a better differentiation of FDIA from normal grid contingencies. On the other hand, PCA provides a significantly reduced false alarm rate.
.
2020. Stochastic Optimization for Residential Demand Response under Time of Use. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). :1–6.
Demand response (DR) is one of the most economical methods for peak demand reduction, renewable energy integration and ancillary service support. Residential electrical energy consumption takes approximately 33% of the total electricity usage and hence has great potentials in DR applications. However, residential DR encounters various challenges such as small individual magnitude, stochastic consuming patterns and privacy issues. In this study, we propose a stochastic optimal mechanism to tackle these issues and try to reveal the benefits from residential DR implementation. Stochastic residential load (SRL) models, a generation cost prediction (GCP) model and a stochastic optimal load aggregation (SOLA) model are developed. A set of uniformly distributed scalers is introduced into the SOLA model to efficiently avoid the peak demand rebound problem in DR applications. The SOLA model is further transformed into a deterministic LP model. Time-of-Use (TOU) tariff is adopted as the price structure because of its similarity and popularity. Case studies show that the proposed mechanism can significantly reduce the peak-to-average power ratio (PAPR) of the load profile as well as the electrical energy cost. Furthermore, the impacts of consumers' participation levels in the DR program are investigated. Simulation results show that the 50% participation level appears as the best case in terms system stability. With the participation level of 80%, consumers' electrical energy cost is minimized. The proposed mechanism can be used by a residential load aggregator (LA) or a utility to plan a DR program, predict its impacts, and aggregate residential loads to minimize the electrical energy cost.
.
2020. Storage and Querying of Large Provenance Graphs Using NoSQL DSE. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :260–262.
Provenance metadata captures history of derivation of an entity, such as a dataset obtained through numerous data transformations. It is of great importance for science, among other fields, as it enables reproducibility and greater intelligibility of research results. With the avalanche of provenance produced by today's society, there is a pressing need for storing and low-latency querying of large provenance graphs. To address this need, in this paper we present a scalable approach to storing and querying provenance graphs using a popular NoSQL column family database system called DataStax Enterprise (DSE). Specifically, we i) propose a storage scheme, including two novel indices that enable efficient traversal of provenance graphs along causality lines, ii) present an algorithm for building our proposed indices for a given provenance graph, iii) implement our algorithm and conduct a performance study in which we store and query a provenance graph with over five million vertices using a DSE cluster running in AWS cloud. Our performance study results further validate scalability and performance efficiency of our approach.
.
2020. Strategy of Relay Selection and Cooperative Jammer Beamforming in Physical Layer Security. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–6.
In this paper, a novel strategy of relay selection and cooperative jammer beamforming is proposed. The proposed scheme selects one node from the intermediate nodes as relay and the rest nodes as friendly jammers. The relay operates in amplify-and-forward (AF) strategy. Jammer weights are derived to null the jamming signals at the destination and relay node and maximize the jamming signal at the eavesdropper. Furthermore, a closed-form optimal solution of power allocation between the selected relay and cooperative jammers is derived. Numerical simulation results show that the proposed scheme can outperform the conventional schemes at the same power consumption.
.
2020. Structure and Key Technologies of Wireless Sensor Network. 2020 Cross Strait Radio Science Wireless Technology Conference (CSRSWTC). :1–2.
With the improvement of scientific and technological level in China, wireless sensor network technology has been widely promoted and applied, which has now been popularized to various fields of society from military defense. Wireless sensor network combines sensor technology, communication technology and computer technology together, and has the ability of information collection, transmission and processing. In this paper, the structure of wireless sensor network and node localization technology are briefly introduced, and the key technologies of wireless sensor network development are summarized from the four aspects of energy efficiency, node localization, data fusion and network security. As a detection system of perceiving the physical world, WSN is also facing challenges while developing rapidly.
.
2020. A Study on Combating Emerging Threat of Deepfake Weaponization. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :485—490.
A breakthrough in the emerging use of machine learning and deep learning is the concept of autoencoders and GAN (Generative Adversarial Networks), architectures that can generate believable synthetic content called deepfakes. The threat lies when these low-tech doctored images, videos, and audios blur the line between fake and genuine content and are used as weapons to cause damage to an unprecedented degree. This paper presents a survey of the underlying technology of deepfakes and methods proposed for their detection. Based on a detailed study of all the proposed models of detection, this paper presents SSTNet as the best model to date, that uses spatial, temporal, and steganalysis for detection. The threat posed by document and signature forgery, which is yet to be explored by researchers, has also been highlighted in this paper. This paper concludes with the discussion of research directions in this field and the development of more robust techniques to deal with the increasing threats surrounding deepfake technology.



