Biblio
Filters: Keyword is 2022: January [Clear All Filters]
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks.
.
2021. Minimal adversarial perturbations added to inputs have been shown to be effective at fooling deep neural networks. In this paper, we introduce several innovations that make white-box targeted attacks follow the intuition of the attacker's goal: to trick the model to assign a higher probability to the target class than to any other, while staying within a specified distance from the original input. First, we propose a new loss function that explicitly captures the goal of targeted attacks, in particular, by using the logits of all classes instead of just a subset, as is common. We show that Auto-PGD with this loss function finds more adversarial examples than it does with other commonly used loss functions. Second, we propose a new attack method that uses a further developed version of our loss function capturing both the misclassification objective and the L∞ distance limit ϵ. This new attack method is relatively 1.5--4.2% more successful on the CIFAR10 dataset and relatively 8.2--14.9% more successful on the ImageNet dataset, than the next best state-of-the-art attack. We confirm using statistical tests that our attack outperforms state-of-the-art attacks on different datasets and values of ϵ and against different defenses.
PLIERS: A Process that Integrates User-Centered Methods into Programming Language Design. ACM Transactions on Computer-Human Interaction (TOCHI).
.
2021. Programming language design requires making many usability-related design decisions. However, existing HCI methods can be impractical to apply to programming languages: they have high iteration costs, programmers require significant learning time, and user performance has high variance. To address these problems, we adapted both formative and summative HCI methods to make them more suitable for programming language design. We integrated these methods into a new process, PLIERS, for designing programming languages in a user-centered way. We evaluated PLIERS by using it to design two new programming languages. Glacier extends Java to enable programmers to express immutability properties effectively and easily. Obsidian is a language for blockchains that includes verification of critical safety properties. Summative usability studies showed that programmers were able to program effectively in both languages after short training periods.