Biblio
Dagger is a modeling and visualization framework that addresses the challenge of representing knowledge and information for decision-makers, enabling them to better comprehend the operational context of network security data. It allows users to answer critical questions such as “Given that I care about mission X, is there any reason I should be worried about what is going on in cyberspace?” or “If this system fails, will I still be able to accomplish my mission?”.
The popularity of mobile devices and the enormous number of third party mobile applications in the market have naturally lead to several vulnerabilities being identified and abused. This is coupled with the immaturity of intrusion detection system (IDS) technology targeting mobile devices. In this paper we propose a modular host-based IDS framework for mobile devices that uses behavior analysis to profile applications on the Android platform. Anomaly detection can then be used to categorize malicious behavior and alert users. The proposed system accommodates different detection algorithms, and is being tested at a major telecom operator in North America. This paper highlights the architecture, findings, and lessons learned.
Present work deals with prediction of damage location in a composite cantilever beam using signal from optical fiber sensor coupled with a neural network with back propagation based learning mechanism. The experimental study uses glass/epoxy composite cantilever beam. Notch perpendicular to the axis of the beam and spanning throughout the width of the beam is introduced at three different locations viz. at the middle of the span, towards the free end of the beam and towards the fixed end of the beam. A plastic optical fiber of 6 cm gage length is mounted on the top surface of the beam along the axis of the beam exactly at the mid span. He-Ne laser is used as light source for the optical fiber and light emitting from other end of the fiber is converted to electrical signal through a converter. A three layer feed forward neural network architecture is adopted having one each input layer, hidden layer and output layer. Three features are extracted from the signal viz. resonance frequency, normalized amplitude and normalized area under resonance frequency. These three features act as inputs to the neural network input layer. The outputs qualitatively identify the location of the notch.
Accurately modeling human decision-making in security is critical to thinking about when, why, and how to recommend that users adopt certain secure behaviors. In this work, we conduct behavioral economics experiments to model the rationality of end-user security decision-making in a realistic online experimental system simulating a bank account. We ask participants to make a financially impactful security choice, in the face of transparent risks of account compromise and benefits offered by an optional security behavior (two-factor authentication). We measure the cost and utility of adopting the security behavior via measurements of time spent executing the behavior and estimates of the participant's wage. We find that more than 50% of our participants made rational (e.g., utility optimal) decisions, and we find that participants are more likely to behave rationally in the face of higher risk. Additionally, we find that users' decisions can be modeled well as a function of past behavior (anchoring effects), knowledge of costs, and to a lesser extent, users' awareness of risks and context (R2=0.61). We also find evidence of endowment effects, as seen in other areas of economic and psychological decision-science literature, in our digital-security setting. Finally, using our data, we show theoretically that a "one-size-fits-all" emphasis on security can lead to market losses, but that adoption by a subset of users with higher risks or lower costs can lead to market gains.
Most Web sites rely on resources hosted by third parties such as CDNs. Third parties may be compromised or coerced into misbehaving, e.g. delivering a malicious script or stylesheet. Unexpected changes to resources hosted by third parties can be detected with the Subresource Integrity (SRI) mechanism. The focus of SRI is on scripts and stylesheets. Web fonts cannot be secured with that mechanism under all circumstances. The first contribution of this paper is to evaluates the potential for attacks using malicious fonts. With an instrumented browser we find that (1) more than 95% of the top 50,000 Web sites of the Tranco top list rely on resources hosted by third parties and that (2) only a small fraction employs SRI. Moreover, we find that more than 60% of the sites in our sample use fonts hosted by third parties, most of which are being served by Google. The second contribution of the paper is a proof of concept of a malicious font as well as a tool for automatically generating such a font, which targets security-conscious users who are used to verifying cryptographic fingerprints. Software vendors publish such fingerprints along with their software packages to allow users to verify their integrity. Due to incomplete SRI support for Web fonts, a third party could force a browser to load our malicious font. The font targets a particular cryptographic fingerprint and renders it as a desired different fingerprint. This allows attackers to fool users into believing that they download a genuine software package although they are actually downloading a maliciously modified version. Finally, we propose countermeasures that could be deployed to protect the integrity of Web fonts.
In the past decade we have seen an active research community proposing attacks and defenses to Cyber-Physical Systems (CPS). Most of these attacks and defenses have been heuristic in nature, limiting the attacker to a set of predefined operations, and proposing defenses with unclear security guarantees. In this paper, we propose a generic adversary model that can capture any type of attack (our attacker is not constrained to follow specific attacks such as replay, delay, or bias) and use it to design security mechanisms with provable security guarantees. In particular, we propose a new secure design paradigm we call DARIA: Designing Actuators to Resist arbItrary Attacks. The main idea behind DARIA is the design of physical limits to actuators in order to prevent attackers from arbitrarily manipulating the system, irrespective of their point of attack (sensors or actuators) or the specific attack algorithm (bias, replay, delays, etc.). As far as we are aware, we are the first research team to propose the design of physical limits to actuators in a control loop in order to keep the system secure against attacks. We demonstrate the generality of our proposal on simulations of vehicular platooning and industrial processes.
Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.
The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.
With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.
Researchers have investigated the dark web for various purposes and with various approaches. Most of the dark web data investigation focused on analysing text collected from HTML pages of websites hosted on the dark web. In addition, researchers have documented work on dark web image data analysis for a specific domain, such as identifying and analyzing Child Sexual Abusive Material (CSAM) on the dark web. However, image data from dark web marketplace postings and forums could also be helpful in forensic analysis of the dark web investigation.The presented work attempts to conduct image classification on classes other than CSAM. Nevertheless, manually scanning thousands of websites from the dark web for visual evidence of criminal activity is time and resource intensive. Therefore, the proposed work presented the use of quantum computing to classify the images using a Quantum Convolutional Neural Network (QCNN). Authors classified dark web images into four categories alcohol, drugs, devices, and cards. The provided dataset used for work discussed in the paper consists of around 1242 images. The image dataset combines an open source dataset and data collected by authors. The paper discussed the implementation of QCNN and offered related performance measures.
Cyber threat intelligence (CTI) is vital for enabling effective cybersecurity decisions by providing timely, relevant, and actionable information about emerging threats. Monitoring the dark web to generate CTI is one of the upcoming trends in cybersecurity. As a result, developing CTI capabilities with the dark web investigation is a significant focus for cybersecurity companies like Deepwatch, DarkOwl, SixGill, ThreatConnect, CyLance, ZeroFox, and many others. In addition, the dark web marketplace (DWM) monitoring tools are of much interest to law enforcement agencies (LEAs). The fact that darknet market participants operate anonymously and online transactions are pseudo-anonymous makes it challenging to identify and investigate them. Therefore, keeping up with the DWMs poses significant challenges for LEAs today. Nevertheless, the offerings on the DWM give insights into the dark web economy to LEAs. The present work is one such attempt to describe and analyze dark web market data collected for CTI using a dark web crawler. After processing and labeling, authors have 53 DWMs with their product listings and pricing.
Visible Light Communication (VLC) emerges as a new wireless communication technology with appealing benefits not present in radio communication. However, current VLC designs commonly require LED lights to emit shining light beams, which greatly limits the applicable scenarios of VLC (e.g., in a sunny day when indoor lighting is not needed). It also entails high energy overhead and unpleasant visual experiences for mobile devices to transmit data using VLC. We design and develop DarkLight, a new VLC primitive that allows light-based communication to be sustained even when LEDs emit extremely-low luminance. The key idea is to encode data into ultra-short, imperceptible light pulses. We tackle challenges in circuit designs, data encoding/decoding schemes, and DarkLight networking, to efficiently generate and reliably detect ultra-short light pulses using off-the-shelf, low-cost LEDs and photodiodes. Our DarkLight prototype supports 1.3-m distance with 1.6-Kbps data rate. By loosening up VLC's reliance on visible light beams, DarkLight presents an unconventional direction of VLC design and fundamentally broadens VLC's application scenarios.
As embedded devices (under the guise of "smart-whatever") rapidly proliferate into many domains, they become attractive targets for malware. Protecting them from software and physical attacks becomes both important and challenging. Remote attestation is a basic tool for mitigating such attacks. It allows a trusted party (verifier) to remotely assess software integrity of a remote, untrusted, and possibly compromised, embedded device (prover). Prior remote attestation methods focus on software (malware) attacks in a one-verifier/one-prover setting. Physical attacks on provers are generally ruled out as being either unrealistic or impossible to mitigate. In this paper, we argue that physical attacks must be considered, particularly, in the context of many provers, e.g., a network, of devices. As- suming that physical attacks require capture and subsequent temporary disablement of the victim device(s), we propose DARPA, a light-weight protocol that takes advantage of absence detection to identify suspected devices. DARPA is resilient against a very strong adversary and imposes minimal additional hardware requirements. We justify and identify DARPA's design goals and evaluate its security and costs.
Mixed-Criticality Systems (MCS) are real-time systems characterized by two or more distinct levels of criticality. In MCS, it is imperative that high-critical flows meet their deadlines while low critical flows can tolerate some delays. Sharing resources between flows in Network-On-Chip (NoC) can lead to different unpredictable latencies and subsequently complicate the implementation of MCS in many-core architectures. This paper proposes a new virtual channel router designed for MCS deployed over NoCs. The first objective of this router is to reduce the worst-case communication latency of high-critical flows. The second aim is to improve the network use rate and reduce the communication latency for low-critical flows. The proposed router, called DAS (Double Arbiter and Switching router), jointly uses Wormhole and Store And Forward techniques for low and high-critical flows respectively. Simulations with a cycle-accurate SystemC NoC simulator show that, with a 15% network use rate, the communication delay of high-critical flows is reduced by 80% while communication delay of low-critical flow is increased by 18% compared to usual solutions based on routers with multiple virtual channels.