Visible to the public Assessing the Global Cyber and Biological ThreatConflict Detection Enabled

TitleAssessing the Global Cyber and Biological Threat
Publication TypeThesis
Year of Publication2015
AuthorsGhita Mezzour
Academic DepartmentElectrical and Computer Engineering Department and Institute for Software Research
DegreeDoctor of Philosophy
Date Published04/2015
UniversityCarnegie Mellon University
CityPittsburgh
KeywordsApr'15, CMU
Abstract

In today's inter-connected world, threats from anywhere in the world can have serious global repercussions. In particular, two types of threats have a global impact: 1) cyber crime and 2) cyber and biological weapons. If a country's environment is conducive to cyber criminal activities, cyber criminals will use that country as a basis to attack end-users around the world. Cyber weapons and biological weapons can now allow a small actor to inflict major damage on a major military power. If cyber and biological weapons are used in combination, the damage can be amplified significantly. Given that the cyber and biological threat is global, it is important to identify countries that pose the greatest threat and design action plans to reduce the threat from these countries. However, prior work on cyber crime lacks empirical substantiation for reasons why some countries' environments are conducive to cyber crime. Prior work on cyber and biological weapon capabilities mainly consists of case studies which only focus on select countries and thus are not generalizeable. To sum up, assessing the global cyber and biological threat currently lacks a systematic empirical approach. In this thesis, I take an empirical and systematic approach towards assessing the global cyber and biological threat. The first part of the thesis focuses on cyber crime. I examine international variation in cyber crime infrastructure hosting and cyber crime exposure. I also empirically test hypotheses about factors behind such variation. In that work, I use Symantec's telemetry data, collected from 10 million Symantec customer computers worldwide and accessed through the Symantec's Worldwide Intelligence Network Environment (WINE). I find that addressing corruption in Eastern Europe or computer piracy in Sub-Saharan Africa has the potential to reduce the global cyber crime. The second part of the thesis focuses on cyber and biological weapon capabilities. I develop two computational methodologies: one to assess countries' biological capabilities and one to assess countries' cyber capabilities. The methodologies examine all countries in the world and can be used by non-experts that only have access to publicly available data. I validate the biological weapon assessment methodology by comparing the methodology's assessment to historical data. This work has the potential to proactively reduce the global cyber and biological weapon threat.

Citation Keynode-25039