As the dominant mobile computing platform, Android has become a prime target for cyber-security attacks. Many of these attacks are manifested at the application level, and through the exploitation of vulnerabilities in apps downloaded from the popular app stores. Increasingly, sophisticated attacks exploit the vulnerabilities in multiple installed apps, making it extremely difficult to foresee such attacks, as neither the app developers nor the store operators know a priori which apps will be installed together. This paper presents an approach that allows the end-users to safeguard a given bundle of apps installed on their device from such attacks. The approach, realized in a tool, called SEPAR, combines static analysis with lightweight formal methods to automatically infer security-relevant properties from a bundle of apps. It then uses a constraint solver to synthesize possible security exploits, from which fine-grained security policies are derived and automatically enforced to protect a given device. In our experiments with over 4,000 Android apps, SEPAR has proven to be highly effective at detecting previously unknown vulnerabilities as well as preventing their exploitation.
|