Visible to the public A Brain-Machine Interface to Navigate Mobile Robots Along Human-Like Paths Amidst ObstaclesConflict Detection Enabled

TitleA Brain-Machine Interface to Navigate Mobile Robots Along Human-Like Paths Amidst Obstacles
Publication TypeConference Paper
Year of Publication2012
AuthorsAbdullah Akce, University of Illinois at Urbana-Champaign, James Norton, University of Illinois at Urbana-Champaign, Timothy Bretl, University of Illinois at Urbana-Champaign
Conference NameIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Date Published10/2012
PublisherIEEE Computer Society
Conference LocationVilamoura, Portugal
Keywordsscience of security, Theoretical Foundations of Threat Assessment by Inverse Optimal Control
Abstract

This paper presents an interface that allows a human user to specify a desired path for a mobile robot in a planar workspace with noisy binary inputs that are obtained at low bit-rates through an electroencephalograph (EEG). We represent desired paths as geodesics with respect to a cost function that is defined so that each path-homotopy class contains exactly one (local) geodesic. We apply max-margin structured learning to recover a cost function that is consistent with observations of human walking paths. We derive an optimal feedback communication protocol to select a local geodesic-- equivalently, a path-homotopy class--using a sequence of noisy bits. We validate our approach with experiments that quantify both how well our learned cost function characterizes human walking data and how well human subjects perform with the resulting interface in navigating a simulated robot with EEG.

URLhttps://static1.squarespace.com/static/53d016d6e4b0e86a1a65f38a/t/55fe190ae4b0d089370eedff/144271591...
Citation Keynode-31135

Other available formats:

A Brain-Machine Interface to Navigate Mobile Robots Along Human-Like Paths Amidst Obstacles
AttachmentSize
bytes