We introduce a framework for controlling the charging and discharging processes of plug-in electric vehicles (PEVs) via pricing strategies. Our framework consists of a hierarchical decision-making setting with two layers, which we refer to as aggregator layer and retail market layer. In the aggregator layer, there is a set of aggregators that are requested (and will be compensated for) to provide certain amount of energy over a period of time. In the retail market layer, the aggregator offers some price for the energy that PEVs may provide; the objective is to choose a pricing strategy to incentivize the PEVs so as they collectively provide the amount of energy that the aggregator has been asked for. The focus of this paper is on the decision-making process that takes places in the retail market layer, where we assume that each individual PEV is a price-anticipating decision-maker. We cast this decision-making process as a game, and provide conditions on the pricing strategy of the aggregator under which this game has a unique Nash equilibrium. We propose a distributed consensus-based iterative algorithm through which the PEVs can seek for this Nash equilibrium. Numerical simulations are included to illustrate our results.
|