Visible to the public Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics

TitleProbabilistic Robust Route Recovery with Spatio-Temporal Dynamics
Publication TypeConference Paper
Year of Publication2016
AuthorsWu, Hao, Mao, Jiangyun, Sun, Weiwei, Zheng, Baihua, Zhang, Hanyuan, Chen, Ziyang, Wang, Wei
Conference NameProceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherACM
Conference LocationNew York, NY, USA
ISBN Number978-1-4503-4232-2
Keywordslocation-basedservices, pubcrawl, Resiliency, routerecovery, spatio-temporal, System recovery, Trajectory
Abstract

Vehicle trajectories are one of the most important data in location-based services. The quality of trajectories directly affects the services. However, in the real applications, trajectory data are not always sampled densely. In this paper, we study the problem of recovering the entire route between two distant consecutive locations in a trajectory. Most existing works solve the problem without using those informative historical data or solve it in an empirical way. We claim that a data-driven and probabilistic approach is actually more suitable as long as data sparsity can be well handled. We propose a novel route recovery system in a fully probabilistic way which incorporates both temporal and spatial dynamics and addresses all the data sparsity problem introduced by the probabilistic method. It outperforms the existing works with a high accuracy (over 80%) and shows a strong robustness even when the length of routes to be recovered is very long (about 30 road segments) or the data is very sparse.

URLhttp://doi.acm.org/10.1145/2939672.2939843
DOI10.1145/2939672.2939843
Citation Keywu_probabilistic_2016