Title | Security Games in Network Flow Problems |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Mathieu Dahan, Saurabh Amin |
Journal | submitted to Math of OR |
Abstract | This article considers a two-player strategic game for network routing under link disruptions. Player 1 (defender) routes flow through a network to maximize her value of effective flow while facing transportation costs. Player 2 (attacker) simultaneously disrupts one or more links to maximize her value of lost flow but also faces cost of disrupting links. Linear programming duality in zero-sum games and the Max-Flow Min-Cut Theorem are applied to obtain properties that are satisfied in any Nash equilibrium. A characterization of the support of the equilibrium strategies is provided using graph-theoretic arguments. Finally, conditions under which these results extend to budget-constrained environments are also studied. These results extend the classical minimum cost maximum flow problem and the minimum cut problem to a class of security games on flow networks. |
URL | https://cps-vo.org/node/38453 |
Citation Key | DahanAmin16_SecurityGamesInNetworkFlowProblems |