Visible to the public CALM: Consistent Adaptive Local Marginal for Marginal Release Under Local Differential Privacy

TitleCALM: Consistent Adaptive Local Marginal for Marginal Release Under Local Differential Privacy
Publication TypeConference Paper
Year of Publication2018
AuthorsZhang, Zhikun, Wang, Tianhao, Li, Ninghui, He, Shibo, Chen, Jiming
Conference NameProceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
PublisherACM
Conference LocationNew York, NY, USA
ISBN Number978-1-4503-5693-0
Keywordscomposability, Differential privacy, marginal release, pubcrawl, Resiliency, Scalability
AbstractMarginal tables are the workhorse of capturing the correlations among a set of attributes. We consider the problem of constructing marginal tables given a set of user's multi-dimensional data while satisfying Local Differential Privacy (LDP), a privacy notion that protects individual user's privacy without relying on a trusted third party. Existing works on this problem perform poorly in the high-dimensional setting; even worse, some incur very expensive computational overhead. In this paper, we propose CALM, Consistent Adaptive Local Marginal, that takes advantage of the careful challenge analysis and performs consistently better than existing methods. More importantly, CALM can scale well with large data dimensions and marginal sizes. We conduct extensive experiments on several real world datasets. Experimental results demonstrate the effectiveness and efficiency of CALM over existing methods.
URLhttp://doi.acm.org/10.1145/3243734.3243742
DOI10.1145/3243734.3243742
Citation Keyzhang_calm_2018