Zhang, H., Ma, J., Wang, Y., Pei, Q..
2009.
An Active Defense Model and Framework of Insider Threats Detection and Sense. 2009 Fifth International Conference on Information Assurance and Security. 1:258—261.
Insider attacks is a well-known problem acknowledged as a threat as early as 1980s. The threat is attributed to legitimate users who take advantage of familiarity with the computational environment and abuse their privileges, can easily cause significant damage or losses. In this paper, we present an active defense model and framework of insider threat detection and sense. Firstly, we describe the hierarchical framework which deal with insider threat from several aspects, and subsequently, show a hierarchy-mapping based insider threats model, the kernel of the threats detection, sense and prediction. The experiments show that the model and framework could sense the insider threat in real-time effectively.
Chen, Jing, Du, Ruiying.
2009.
Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.
Bloch, M., Laneman, J. N..
2009.
Information-spectrum methods for information-theoretic security. 2009 Information Theory and Applications Workshop. :23–28.
We investigate the potential of an information-spectrum approach to information-theoretic security. We show how this approach provides conceptually simple yet powerful results that can be used to investigate complex communication scenarios. In particular, we illustrate the usefulness of information-spectrum methods by analyzing the effect of channel state information (CSI) on the secure rates achievable over wiretap channels. We establish a formula for secrecy capacity, which we then specialize to compute achievable rates for ergodic fading channels in the presence of imperfect CSI. Our results confirm the importance of having some knowledge about the eavesdropper's channel, but also show that imperfect CSI does not necessarily preclude security.
Ingols, Kyle, Chu, Matthew, Lippmann, Richard, Webster, Seth, Boyer, Stephen.
2009.
Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.