Biblio

Found 19604 results

2018-05-14
2021-04-08
Imai, H., Hanaoka, G., Shikata, J., Otsuka, A., Nascimento, A. C..  2002.  Cryptography with information theoretic security. Proceedings of the IEEE Information Theory Workshop. :73–.
Summary form only given. We discuss information-theoretic methods to prove the security of cryptosystems. We study what is called, unconditionally secure (or information-theoretically secure) cryptographic schemes in search for a system that can provide long-term security and that does not impose limits on the adversary's computational power.
2018-05-14
Hourdakis, J, Michalopoulos, PG.  2001.  Computer aided testing and evaluation of adaptive ramp control strategies. Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. :422–427.
Hourdakis, John, Michalopoulos, Panos G.  2001.  Computer Aided Testing of Adaptive Ramp Control Applications. NGSIM Meeting of Future Transport Modeling, Tucson, Arizona.
Michalopoulos, P, Hourdakis, John.  2001.  Review of non-intrusive advanced sensor devices for advanced traffic management systems and recent advances in video detection. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 215:345–355.
2014-09-17
Schneider, Fred B..  2000.  Enforceable Security Policies. ACM Trans. Inf. Syst. Secur.. 3:30–50.
A precise characterization is given for the class of security policies enforceable with mechanisms that work by monitoring system execution, and automata are introduced for specifying exactly that class of security policies. Techniques to enforce security policies specified by such automata are also discussed.
2018-05-14
Hourdakis, John, Michalopoulos, Panos G.  2000.  Development And Implementation of A Virtual Traffic Management Center. Proceedings of the World Congress on Intelligent Transportation Systems, Turin, Italy November.
2014-12-10
Schneider, Fred B..  2000.  Enforceable Security Policies. ACM Trans. Inf. Syst. Secur.. 3:30–50.

A precise characterization is given for the class of security policies enforceable with mechanisms that work by monitoring system execution, and automata are introduced for specifying exactly that class of security policies. Techniques to enforce security policies specified by such automata are also discussed.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

2018-05-14
Michalopoulos, Panos G, Hourdakis, John.  2000.  Simplifying Simulation for ITS Applications. ITS America 10th Annual Meeting and Exposition: Revolutionary Thinking, Real Results.
Hourdakis, John, Michalopoulos, Panos G.  1999.  Towards the Development of Next Generation Traffic Management Centers: The TRAMLAB System. World Congress on Intelligent Transport Systems (6th: 1999: Toronto Ont.). ITS: smarter, smoother, safer, sooner.
Hourdakis, John, Chassiakos, Athanassios P.  1996.  Preliminary Features of a Decision Support System for Incident Detection. Applications of Advanced Technologies in Transportation Engineering. :227–232.
Stephanedes, Yorgos, Hourdakis, John.  1996.  Transferability of freeway incident detection algorithms. Transportation Research Record: Journal of the Transportation Research Board. :184–195.
2020-09-04
Amoroso, E., Merritt, M..  1994.  Composing system integrity using I/O automata. Tenth Annual Computer Security Applications Conference. :34—43.
The I/O automata model of Lynch and Turtle (1987) is summarized and used to formalize several types of system integrity based on the control of transitions to invalid starts. Type-A integrity is exhibited by systems with no invalid initial states and that disallow transitions from valid reachable to invalid states. Type-B integrity is exhibited by systems that disallow externally-controlled transitions from valid reachable to invalid states, Type-C integrity is exhibited by systems that allow locally-controlled or externally-controlled transitions from reachable to invalid states. Strict-B integrity is exhibited by systems that are Type-B but not Type-A. Strict-C integrity is exhibited by systems that are Type-C but not Type-B. Basic results on the closure properties that hold under composition of systems exhibiting these types of integrity are presented in I/O automata-theoretic terms. Specifically, Type-A, Type-B, and Type-C integrity are shown to be composable, whereas Strict-B and Strict-C integrity are shown to not be generally composable. The integrity definitions and compositional results are illustrated using the familiar vending machine example specified as an I/O automaton and composed with a customer environment. The implications of the integrity definitions and compositional results on practical system design are discussed and a research plan for future work is outlined.
2018-05-14
Larsen, Walter G.  1985.  Perfume dermatitis. Journal of the American Academy of Dermatology. 12:1–9.
2014-12-10
Thompson, Ken.  1984.  Reflections on Trusting Trust. Commun. ACM. 27:761–763.

To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is more important to trust the people who wrote the software.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

2014-09-17
Thompson, Ken.  1984.  Reflections on Trusting Trust. Commun. ACM. 27:761–763.
To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is more important to trust the people who wrote the software.
2014-09-26
[Anonymous].  1983.  Biblio.
2014-12-10
Robling Denning, Dorothy Elizabeth.  1982.  Cryptography and Data Security. :414.

Electronic computers have evolved from exiguous experimental enterprises in the 1940s to prolific practical data processing systems in the 1980s. As we have come to rely on these systems to process and store data, we have also come to wonder about their ability to protect valuable data.

Data security is the science and study of methods of protecting data in computer and communication systems from unauthorized disclosure and modification. The goal of this book is to introduce the mathematical principles of data security and to show how these principles apply to operating systems, database systems, and computer networks. The book is for students and professionals seeking an introduction to these principles. There are many references for those who would like to study specific topics further.

Data security has evolved rapidly since 1975. We have seen exciting developments in cryptography: public-key encryption, digital signatures, the Data Encryption Standard (DES), key safeguarding schemes, and key distribution protocols. We have developed techniques for verifying that programs do not leak confidential data, or transmit classified data to users with lower security clearances. We have found new controls for protecting data in statistical databases--and new methods of attacking these databases. We have come to a better understanding of the theoretical and practical limitations to security.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

2014-09-17
Denning, Dorothy E..  1976.  A Lattice Model of Secure Information Flow. Commun. ACM. 19:236–243.
This paper investigates mechanisms that guarantee secure information flow in a computer system. These mechanisms are examined within a mathematical framework suitable for formulating the requirements of secure information flow among security classes. The central component of the model is a lattice structure derived from the security classes and justified by the semantics of information flow. The lattice properties permit concise formulations of the security requirements of different existing systems and facilitate the construction of mechanisms that enforce security. The model provides a unifying view of all systems that restrict information flow, enables a classification of them according to security objectives, and suggests some new approaches. It also leads to the construction of automatic program certification mechanisms for verifying the secure flow of information through a program.