Visible to the public Biblio

Filters: Keyword is software engineering  [Clear All Filters]
2017-09-06
C. Theisen, K. Herzig, B. Murphy, L. Williams.  2017.  Risk-based attack surface approximation: how much data is enough? 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). :273-282.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code base. Making informed decisions on what code to review can improve a team's ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

C. Theisen, L. Williams, K. Oliver, E. Murphy-Hill.  2016.  Software Security Education at Scale. 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C). :346-355.

Massively Open Online Courses (MOOCs) provide a unique opportunity to reach out to students who would not normally be reached by alleviating the need to be physically present in the classroom. However, teaching software security coursework outside of a classroom setting can be challenging. What are the challenges when converting security material from an on-campus course to the MOOC format? The goal of this research is to assist educators in constructing software security coursework by providing a comparison of classroom courses and MOOCs. In this work, we compare demographic information, student motivations, and student results from an on-campus software security course and a MOOC version of the same course. We found that the two populations of students differed, with the MOOC reaching a more diverse set of students than the on-campus course. We found that students in the on-campus course had higher quiz scores, on average, than students in the MOOC. Finally, we document our experience running the courses and what we would do differently to assist future educators constructing similar MOOC's.

2016-04-25
Michael Maass.  2016.  A Theory and Tools for Applying Sandboxes Effectively. Institute for Software Research, School of Computer Science. PhD Philosphy:166.

It is more expensive and time consuming to build modern software without extensive supply chains. Supply chains decrease these development risks, but typically at the cost of increased security risk. In particular, it is often difficult to understand or verify what a software component delivered by a third party does or could do. Such a component could contain unwanted behaviors, vulnerabilities, or malicious code, many of which become incorporated in applications utilizing the component. Sandboxes provide relief by encapsulating a component and imposing a security policy on it. This limits the operations the component can perform without as much need to trust or verify the component. Instead, a component user must trust or verify the relatively simple sandbox. Given this appealing prospect, researchers have spent the last few decades developing new sandboxing techniques and sandboxes. However, while sandboxes have been adopted in practice, they are not as pervasive as they could be. Why are sandboxes not achieving ubiquity at the same rate as extensive supply chains? This thesis advances our understanding of and overcomes some barriers to sandbox adoption. We systematically analyze ten years (2004 – 2014) of sandboxing research from top-tier security and systems conferences. We uncover two barriers: (1) sandboxes are often validated using relatively subjective techniques and (2) usability for sandbox deployers is often ignored by the studied community. We then focus on the Java sandbox to empirically study its use within the open source community. We find features in the sandbox that benign applications do not use, which have promoted a thriving exploit landscape. We develop run time monitors for the Java Virtual Machine (JVM) to turn off these features, stopping all known sandbox escaping JVM exploits without breaking benign applications. Furthermore, we find that the sandbox contains a high degree of complexity benign applications need that hampers sandbox use. When studying the sandbox’s use, we did not find a single application that successfully deployed the sandbox for security purposes, which motivated us to overcome benignly-used complexity via tooling. We develop and evaluate a series of tools to automate the most complex tasks, which currently require error-prone manual effort. Our tools help users derive, express, and refine a security policy and impose it on targeted Java application JARs and classes. This tooling is evaluated through case studies with industrial collaborators where we sandbox components that were previously difficult to sandbox securely. Finally, we observe that design and implementation complexity causes sandbox developers to accidentally create vulnerable sandboxes. Thus, we develop and evaluate a sandboxing technique that leverages existing cloud computing environments to execute untrusted computations. Malicious outcomes produced by the computations are contained by ephemeral virtual machines. We describe a field trial using this technique with Adobe Reader and compare the new sandbox to existing sandboxes using a qualitative framework we developed.