Visible to the public Biblio

Filters: Keyword is patterns  [Clear All Filters]
2016-12-05
Hanan Hibshi, Travis Breaux, Maria Riaz, Laurie Williams.  2014.  A Framework to Measure Experts' Decision Making in Security Requirements Analysis. 2014 IEEE 1st International Workshop on Evolving Security and Privacy Requirements Engineering (ESPRE).

Research shows that commonly accepted security requirements   are  not  generally  applied  in  practice.  Instead  of relying on requirements checklists, security experts rely on their expertise and background knowledge to identify security vulnerabilities.  To  understand  the  gap  between  available checklists  and  practice,  we  conducted  a  series  of  interviews  to encode   the   decision-making   process   of  security   experts   and novices during security requirements analysis. Participants were asked to analyze two types of artifacts: source code, and network diagrams  for  vulnerabilities  and  to  apply  a  requirements checklist to mitigate some of those vulnerabilities.  We framed our study using Situation Awareness—a cognitive theory from psychology—to   elicit  responses   that  we  later  analyzed   using coding theory and grounded analysis.  We report our preliminary results of analyzing two interviews that reveal possible decision- making patterns that could characterize how analysts perceive, comprehend   and  project  future  threats  which  leads  them  to decide upon requirements  and their specifications,  in addition, to how  experts  use  assumptions  to  overcome  ambiguity  in specifications.  Our goal is to build a model that researchers  can use to evaluate their security requirements methods against how experts transition through different situation awareness levels in their decision-making  process.

Hanan Hibshi, Travis Breaux, Maria Riaz, Laurie Williams.  2015.  Discovering Decision-Making Patterns for Security Novices and Experts.

Security analysis requires some degree of knowledge to align threats to vulnerabilities in information technology. Despite the abundance of security requirements, the evidence suggests that security experts are not applying these checklists. Instead, they default to their background knowledge to identify security vulnerabilities. To better understand the different effects of security checklists, analysis and expertise, we conducted a series of interviews to capture and encode the decisionmaking process of security experts and novices during three security requirements analysis exercises. Participants were asked to analyze three kinds of artifacts: source code, data flow diagrams, and network diagrams, for vulnerabilities, and then to apply a requirements checklist to demonstrate their ability to mitigate vulnerabilities. We framed our study using Situation Awareness theory to elicit responses that were analyzed using coding theory and grounded analysis. Our results include decision-making patterns that characterize how analysts perceive, comprehend and project future threats, and how these patterns relate to selecting security mitigations. Based on this analysis, we discovered new theory to measure how security experts and novices apply attack models and how structured and unstructured analysis enables increasing security requirements coverage. We discuss suggestions of how our method could be adapted and applied to improve training and education instruments of security analysts.