Visible to the public Biblio

Filters: Keyword is Resilience Requirements, Design, and Testing  [Clear All Filters]
2015-10-11
Subramani, Shweta.  2014.  Security Profile of Fedora. Computer Science. MS:105.

The process of software development and evolution has proven difficult to improve. For example,  well documented security issues such as SQL injection (SQLi), after more than a decade, still top  most vulnerability lists. Quantitative security process and quality metrics are often subdued due to  lack of time and resources. Security problems are hard to quantify and even harder to predict or  relate to any process improvement activity.  The goal of this thesis is to assess usefulness of “classical” software reliability engineering (SRE)  models in the context of open source software security, the conditions under which they may be  useful, and the information that they can provide with respect to the security quality of a software  product.  We start with security problem reports for open source Fedora series of software releases.We  illustrate how one can learn from normal operational profile about the non-operational processes  related to security problems. One aspect is classification of security problems based on the human  traits that contribute to the injection of problems into code, whether due to poor practices or limited  knowledge (epistemic errors), or due to random accidental events (aleatoric errors). Knowing the  distribution aids in development of an attack profile. In the case of Fedora, the distribution of  security problems found post-release was consistent across four different releases of the software.  The security problem discovery rate appears to be roughly constant but much lower than the initial  non-security problem discovery rate. Previous work has shown that non-operational testing can help  accelerate and focus the problem discovery rate and that it can be successfully modeled.We find  that some classical reliability models can be used with success to estimate the residual number of  security problems, and through that provide a measure of the security characteristics of the software.  We propose an agile software testing process that combines operational and non-operational (or  attack related) testing with the intent of finding more security problems faster. 

2015-01-11
Donghoo Kim, Mladen Vouk.  2014.  A survey of common security vulnerabilities and corresponding countermeasures for SaaS. Second IEEE International workshop on Cloud Computing Systems, Networks, and Applications (CCSNA-2014). :59-63.