Biblio
To find security vulnerabilities, many research approaches and commercial tools use a static analysis and check constraints. Previous work compared using a benchmark several approaches where the static analysis and constraints are combined, and the evaluation focused on corner cases in the Java language. We extend the comparative evaluation of these approaches to include one approach that separates the constraints from the static analysis. We also extend the benchmark to cover more classes of security vulnerabilities. Approaches that combine the static analysis and constraints work well for vulnerabilities that are sensitive to the order in which statements are executed. The additional effort required to write separate constraints is rewarded by better recall in dealing with dataflow communication and better precision for callback methods that are common in applications built on frameworks such as Android.
Finding architectural flaws in object-oriented code requires a runtime architecture that shows multiple components of the same type that are used in different contexts. Previous work showed that a runtime architecture can be approximated by an abstract object graph that a static analysis extracts from code with Ownership Domain annotations. To find architectural flaws, it is not enough to reason about the presence or absence of communication. Additional work is needed to reason about the content of the communication. The contribution of this paper is a static analysis that extracts a hierarchical object graph with dataflow edges that refer to objects. The extraction analysis combines the aliasing precision provided by Ownership Domains with a domainsensitive value flow analysis. We evaluate the extraction analysis on an open-source Android application and discuss examples of dataflow edges that refer to objects that are in actual domains or to flow objects that are in domains corresponding to unique annotations.
Android is the most popular platform for mobile devices. It facilitates sharing of data and services among applications using a rich inter-app communication system. While access to resources can be controlled by the Android permission system, enforcing permissions is not sufficient to prevent security violations, as permissions may be mismanaged, intentionally or unintentionally. Android's enforcement of the permissions is at the level of individual apps, allowing multiple malicious apps to collude and combine their permissions or to trick vulnerable apps to perform actions on their behalf that are beyond their individual privileges. In this paper, we present COVERT, a tool for compositional analysis of Android inter-app vulnerabilities. COVERT's analysis is modular to enable incremental analysis of applications as they are installed, updated, and removed. It statically analyzes the reverse engineered source code of each individual app, and extracts relevant security specifications in a format suitable for formal verification. Given a collection of specifications extracted in this way, a formal analysis engine (e.g., model checker) is then used to verify whether it is safe for a combination of applications-holding certain permissions and potentially interacting with each other-to be installed together. Our experience with using COVERT to examine over 500 real-world apps corroborates its ability to find inter-app vulnerabilities in bundles of some of the most popular apps on the market.