Biblio
The landscape of automotive in-vehicle networks is changing driven by the vast options for infotainment features and progress toward fully-autonomous vehicles. However, the security of automotive networks is lagging behind feature-driven technologies, and new vulnerabilities are constantly being discovered. In this paper, we introduce a road map towards a security solution for in-vehicle networks that can detect anomalous and failed states of the network and adaptively respond in real-time to maintain a fail-operational system.
We propose a macroscopic traffic network flow model suitable for analysis as a dynamical system, and we qualitatively analyze equilibrium flows as well as convergence. Flows at a junction are determined by downstream supply of capacity as well as upstream demand of traffic wishing to flow through the junction. This approach is rooted in the celebrated Cell Transmission Model for freeway traffic flow. Unlike related results which rely on certain system cooperativity properties, our model generally does not possess these properties. We show that the lack of cooperativity is in fact a useful feature that allows traffic control methods, such as ramp metering, to be effective. Finally, we leverage the results of the technical note to develop a linear program for optimal ramp metering.