Biblio
Filters: Keyword is invasive software [Clear All Filters]
Quantifying the impact of adversarial evasion attacks on machine learning based android malware classifiers. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1-10.
.
2017. With the proliferation of Android-based devices, malicious apps have increasingly found their way to user devices. Many solutions for Android malware detection rely on machine learning; although effective, these are vulnerable to attacks from adversaries who wish to subvert these algorithms and allow malicious apps to evade detection. In this work, we present a statistical analysis of the impact of adversarial evasion attacks on various linear and non-linear classifiers, using a recently proposed Android malware classifier as a case study. We systematically explore the complete space of possible attacks varying in the adversary's knowledge about the classifier; our results show that it is possible to subvert linear classifiers (Support Vector Machines and Logistic Regression) by perturbing only a few features of malicious apps, with more knowledgeable adversaries degrading the classifier's detection rate from 100% to 0% and a completely blind adversary able to lower it to 12%. We show non-linear classifiers (Random Forest and Neural Network) to be more resilient to these attacks. We conclude our study with recommendations for designing classifiers to be more robust to the attacks presented in our work.
Adversarial Machine Learning in Malware Detection: Arms Race between Evasion Attack and Defense. 2017 European Intelligence and Security Informatics Conference (EISIC). :99-106.
.
2017. Since malware has caused serious damages and evolving threats to computer and Internet users, its detection is of great interest to both anti-malware industry and researchers. In recent years, machine learning-based systems have been successfully deployed in malware detection, in which different kinds of classifiers are built based on the training samples using different feature representations. Unfortunately, as classifiers become more widely deployed, the incentive for defeating them increases. In this paper, we explore the adversarial machine learning in malware detection. In particular, on the basis of a learning-based classifier with the input of Windows Application Programming Interface (API) calls extracted from the Portable Executable (PE) files, we present an effective evasion attack model (named EvnAttack) by considering different contributions of the features to the classification problem. To be resilient against the evasion attack, we further propose a secure-learning paradigm for malware detection (named SecDefender), which not only adopts classifier retraining technique but also introduces the security regularization term which considers the evasion cost of feature manipulations by attackers to enhance the system security. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed methods.