Biblio
The cyber security exposure of resilient systems is frequently described as an attack surface. A larger surface area indicates increased exposure to threats and a higher risk of compromise. Ad-hoc addition of dynamic proactive defenses to distributed systems may inadvertently increase the attack surface. This can lead to cyber friendly fire, a condition in which adding superfluous or incorrectly configured cyber defenses unintentionally reduces security and harms mission effectiveness. Examples of cyber friendly fire include defenses which themselves expose vulnerabilities (e.g., through an unsecured admin tool), unknown interaction effects between existing and new defenses causing brittleness or unavailability, and new defenses which may provide security benefits, but cause a significant performance impact leading to mission failure through timeliness violations. This paper describes a prototype service capability for creating semantic models of attack surfaces and using those models to (1) automatically quantify and compare cost and security metrics across multiple surfaces, covering both system and defense aspects, and (2) automatically identify opportunities for minimizing attack surfaces, e.g., by removing interactions that are not required for successful mission execution.
Alex Endert's dissertation "Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering" described semantic interaction, a user interaction methodology for visual analytics (VA). It showed that user interaction embodies users' analytic process and can thus be mapped to model-steering functionality for "human-in-the-loop" system design. The dissertation contributed a framework (or pipeline) that describes such a process, a prototype VA system to test semantic interaction, and a user evaluation to demonstrate semantic interaction's impact on the analytic process. This research is influencing current VA research and has implications for future VA research.
Dagger is a modeling and visualization framework that addresses the challenge of representing knowledge and information for decision-makers, enabling them to better comprehend the operational context of network security data. It allows users to answer critical questions such as “Given that I care about mission X, is there any reason I should be worried about what is going on in cyberspace?” or “If this system fails, will I still be able to accomplish my mission?”.