Visible to the public Biblio

Filters: Keyword is Context  [Clear All Filters]
2019-09-09
E. Peterson.  2016.  Dagger: Modeling and visualization for mission impact situation awareness. MILCOM 2016 - 2016 IEEE Military Communications Conference. :25-30.

Dagger is a modeling and visualization framework that addresses the challenge of representing knowledge and information for decision-makers, enabling them to better comprehend the operational context of network security data. It allows users to answer critical questions such as “Given that I care about mission X, is there any reason I should be worried about what is going on in cyberspace?” or “If this system fails, will I still be able to accomplish my mission?”.

Johnson, Matthew, Bradshaw, Jeffrey M., Feltovich, Paul J., Jonker, Catholijn M., van Riemsdijk, M. Birna, Sierhuis, Maarten.  2014.  Coactive Design: Designing Support for Interdependence in Joint Activity. J. Hum.-Robot Interact.. 3:43–69.

Coactive Design is a new approach to address the increasingly sophisticated roles that people and robots play as the use of robots expands into new, complex domains. The approach is motivated by the desire for robots to perform less like teleoperated tools or independent automatons and more like interdependent teammates. In this article, we describe what it means to be interdependent, why this is important, and the design implications that follow from this perspective. We argue for a human-robot system model that supports interdependence through careful attention to requirements for observability, predictability, and directability. We present a Coactive Design method and show how it can be a useful approach for developers trying to understand how to translate high-level teamwork concepts into reusable control algorithms, interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. As an example of the coactive design approach, we present our results from the DARPA Virtual Robotics Challenge, a competition designed to spur development of advanced robots that can assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight countries competed in three different tasks providing an excellent evaluation of the relative effectiveness of different approaches to human-machine system design.