Hammad, Mohamed, Elmedany, Wael, Ismail, Yasser.
2021.
Design and Simulation of AES S-Box Towards Data Security in Video Surveillance Using IP Core Generator. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :469–476.
Broadcasting applications such as video surveillance systems are using High Definition (HD) videos. The use of high-resolution videos increases significantly the data volume of video coding standards such as High-Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), which increases the challenge for storing, processing, encrypting, and transmitting these data over different communication channels. Video compression standards use state-of-the-art techniques to compress raw video sequences more efficiently, such techniques require high computational complexity and memory utilization. With the emergent of using HEVC and video surveillance systems, many security risks arise such as man-in-the-middle attacks, and unauthorized disclosure. Such risks can be mitigated by encrypting the traffic of HEVC. The most widely used encryption algorithm is the Advanced Encryption Standard (AES). Most of the computational complexity in AES hardware-implemented is due to S-box or sub-byte operation and that because it needs many resources and it is a non-linear structure. The proposed AES S-box ROM design considers the latest HEVC used for homeland security video surveillance systems. This paper presents different designs for VHDL efficient ROM implementation of AES S-box using IP core generator, ROM components, and using Functions, which are all supported by Xilinx. IP core generator has Block Memory Generator (BMG) component in its library. S-box IP core ROM is implemented using Single port block memory. The S-box lookup table has been used to fill the ROM using the .coe file format provided during the initialization of the IP core ROM. The width is set to 8-bit to address the 256 values while the depth is set to 8-bit which represents the data filed in the ROM. The whole design is synthesized using Xilinx ISE Design Suite 14.7 software, while Modelism (version10.4a) is used for the simulation process. The proposed IP core ROM design has shown better memory utilization compared to non-IP core ROM design, which is more suitable for memory-intensive applications. The proposed design is suitable for implementation using the FPGA ROM design. Hardware complexity, frequency, memory utilization, and delay are presented in this paper.
Hassan, Salman, Bari, Safioul, Shuvo, A S M Muktadiru Baized, Khan, Shahriar.
2021.
Implementation of a Low-Cost IoT Enabled Surveillance Security System. 2021 7th International Conference on Applied System Innovation (ICASI). :101–104.
Security is a requirement in society, yet its wide implementation is held back because of high expenses, and barriers to the use of technology. Experimental implementation of security at low cost will only help in promoting the technology at more affordable prices. This paper describes the design of a security system of surveillance using Raspberry Pi and Arduino UNO. The design senses the presence of \$a\$ human in a surveillance area and immediately sets off the buzzer and simultaneously starts capturing video of the motion it had detected and stores it in a folder. When the design senses a motion, it immediately sends an SMS to the user. The user of this design can see the live video of the motion it detects using the internet connection from a remote area. Our objective of making a low-cost surveillance area security system has been mostly fulfilled. Although this is a low-cost project, features can be compared with existing commercially available systems.
Su, Nuğman, Panayirci, Erdal, Koca, Mutlu, Haas, Harald.
2021.
Transmit Precoding for Physical Layer Security of MIMO-NOMA-Based Visible Light Communications. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
We consider the physical layer security (PLS) of non-orthogonal multiple access (NOMA) enabled multiple-input multiple-output (MIMO) visible light communication systems in the presence of a passive eavesdropper (Eve). In order to disrupt the decoding process at Eve, we propose a novel precoding scheme reinforced with random constellation coding. Multiple legitimate users (Bobs) will be served simultaneously using NOMA. For the proposed precoder design, we exploit the slow-fading characteristics of the visible light channel so that the transmitted symbols are successfully decoded at Bob, while Eve suffers from very high bit error ratios (BERs) due to precoding-induced jamming. Via computer simulations, we show that Bob can successfully decode their own information in various user configurations and receiver diversities. It is also shown that the BER at Eve's side is increased to the 0.5-level for similar and the asymmetrical positioning of Bob with respect to the transmitter, thus PLS is ensured by the proposed preceding technique.
Halabi, Talal.
2021.
Adaptive Security Risk Mitigation in Edge Computing: Randomized Defense Meets Prospect Theory. 2021 IEEE/ACM Symposium on Edge Computing (SEC). :432–437.
Edge computing supports the deployment of ubiquitous, smart services by providing computing and storage closer to terminal devices. However, ensuring the full security and privacy of computations performed at the edge is challenging due to resource limitation. This paper responds to this challenge and proposes an adaptive approach to defense randomization among the edge data centers via a stochastic game, whose solution corresponds to the optimal security deployment at the network's edge. Moreover, security risk is evaluated subjectively based on Prospect Theory to reflect realistic scenarios where the attacker and the edge system do not similarly perceive the status of the infrastructure. The results show that a non-deterministic defense policy yields better security compared to a static defense strategy.