Visible to the public Biblio

Found 589 results

Filters: First Letter Of Last Name is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Ryndyuk, V. A., Varakin, Y. S., Pisarenko, E. A..  2022.  New Architecture of Transformer Networks for Generating Natural Dialogues. 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
The new architecture of transformer networks proposed in the work can be used to create an intelligent chat bot that can learn the process of communication and immediately model responses based on what has been said. The essence of the new mechanism is to divide the information flow into two branches containing the history of the dialogue with different levels of granularity. Such a mechanism makes it possible to build and develop the personality of a dialogue agent in the process of dialogue, that is, to accurately imitate the natural behavior of a person. This gives the interlocutor (client) the feeling of talking to a real person. In addition, making modifications to the structure of such a network makes it possible to identify a likely attack using social engineering methods. The results obtained after training the created system showed the fundamental possibility of using a neural network of a new architecture to generate responses close to natural ones. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. The new technology can be used in social engineering attack detection systems, which is a big problem at present. The novelty and prospects of the proposed architecture of the neural network also lies in the possibility of creating on its basis dialogue systems with a high level of biological plausibility.
ISSN: 2769-3538
Ryabko, Boris.  2021.  Application of algorithmic information theory to calibrate tests of random number generators. 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY). :61–65.
Currently, statistical tests for random number generators (RNGs) are widely used in practice, and some of them are even included in information security standards. But despite the popularity of RNGs, consistent tests are known only for stationary ergodic deviations of randomness (a test is consistent if it detects any deviations from a given class when the sample size goes to infinity). However, the model of a stationary ergodic source is too narrow for some RNGs, in particular, for generators based on physical effects. In this article, we propose computable consistent tests for some classes of deviations more general than stationary ergodic and describe some general properties of statistical tests. The proposed approach and the resulting test are based on the ideas and methods of information theory.
Ruwin R. Ratnayake, R.M., Abeysiriwardhena, G.D.N.D.K., Perera, G.A.J., Senarathne, Amila, Ponnamperuma, R., Ganegoda, B.A..  2022.  ARGUS – An Adaptive Smart Home Security Solution. 2022 4th International Conference on Advancements in Computing (ICAC). :459–464.
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
Rutsch, Matthias, Krauß, Fabian, Allevato, Gianni, Hinrichs, Jan, Hartmann, Claas, Kupnik, Mario.  2021.  Simulation of protection layers for air-coupled waveguided ultrasonic phased-arrays. 2021 IEEE International Ultrasonics Symposium (IUS). :1–4.
Waveguided air-coupled ultrasonic phased arrays offer grating-lobe-free beam forming for many applications such as obstacle detection, non-destructive testing, flow metering or tactile feedback. However, for industrial applications, the open output ports of the waveguide can be clogged due to dust, liquids or dirt leading to additional acoustic attenuation. In previous work, we presented the effectiveness of hydrophobic fabrics as a protection layer for acoustic waveguides. In this work, we created a numerical model of the waveguide including the hydrophobic fabric allowing the prediction of the insertion loss (IL). The numerical model uses the boundary element method (BEM) and the finite element method (FEM) in the frequency domain including the waveguide, the hydrophobic fabric and the finite-sized rigid baffle used in the measurements. All walls are assumed as ideal sound hard and the transducers are ideal piston transducers. The specific flow resistivity of the hydrophobic fabric, which is required for the simulation, is analyzed using a 3D-printed flow pipe. The simulations are validated with a calibrated microphone in an anechoic chamber. The IL of the simulations are within the uncertainties of the measurements. In addition, both the measurements and the simulations have no significant influence on the beamforming capabilities.
Rüth, Jan, Zimmermann, Torsten, Wolsing, Konrad, Hohlfeld, Oliver.  2018.  Digging into Browser-Based Crypto Mining. Proceedings of the Internet Measurement Conference 2018. :70–76.

Mining is the foundation of blockchain-based cryptocurrencies such as Bitcoin rewarding the miner for finding blocks for new transactions. The Monero currency enables mining with standard hardware in contrast to special hardware (ASICs) as often used in Bitcoin, paving the way for in-browser mining as a new revenue model for website operators. In this work, we study the prevalence of this new phenomenon. We identify and classify mining websites in 138M domains and present a new fingerprinting method which finds up to a factor of 5.7 more miners than publicly available block lists. Our work identifies and dissects Coinhive as the major browser-mining stakeholder. Further, we present a new method to associate mined blocks in the Monero blockchain to mining pools and uncover that Coinhive currently contributes 1.18% of mined blocks having turned over 1293 Moneros in June 2018.

Rutard, F., Sigaud, O., Chetouani, M..  2020.  TIRL: Enriching Actor-Critic RL with non-expert human teachers and a Trust Model. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :604–611.
Reinforcement learning (RL) algorithms have been demonstrated to be very attractive tools to train agents to achieve sequential tasks. However, these algorithms require too many training data to converge to be efficiently applied to physical robots. By using a human teacher, the learning process can be made faster and more robust, but the overall performance heavily depends on the quality and availability of teacher demonstrations or instructions. In particular, when these teaching signals are inadequate, the agent may fail to learn an optimal policy. In this paper, we introduce a trust-based interactive task learning approach. We propose an RL architecture able to learn both from environment rewards and from various sparse teaching signals provided by non-expert teachers, using an actor-critic agent, a human model and a trust model. We evaluate the performance of this architecture on 4 different setups using a maze environment with different simulated teachers and show that the benefits of the trust model.
Rustgi, Pulkit, Fung, Carol.  2019.  Demo: DroidNet - An Android Permission Control Recommendation System Based on Crowdsourcing. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :737–738.
Mobile and web application security, particularly the areas of data privacy, has raised much concerns from the public in recent years. Most applications, or apps for short, are installed without disclosing full information to users and clearly stating what the application has access to, which often raises concern when users become aware of unnecessary information being collected. Unfortunately, most users have little to no technical expertise in regards to what permissions should be turned on and can only rely on their intuition and past experiences to make relatively uninformed decisions. To solve this problem, we developed DroidNet, which is a crowd-sourced Android recommendation tool and framework. DroidNet alleviates privacy concerns and presents users with high confidence permission control recommendations based on the decision from expert users who are using the same apps. This paper explains the general framework, principles, and model behind DroidNet while also providing an experimental setup design which shows the effectiveness and necessity for such a tool.
Rustagi, Taru, Yoo, Kyungjin.  2018.  AR Navigation Solution Using Vector Tiles. Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. :71:1-71:2.

This study discusses the results and findings of an augmented reality navigation app that was created using vector data uploaded to an online mapping software for indoor navigation. The main objective of this research is to determine the current issues with a solution of indoor navigation that relies on the use of GPS signals, as these signals are sparse in buildings. The data was uploaded in the form of GeoJSON files to MapBox which relayed the data to the app using an API in the form of Tilesets. The application converted the tilesets to a miniaturized map and calculated the navigation path, and then overlaid that navigation line onto the floor via the camera. Once the project setup was completed, multiple navigation paths have been tested numerous times between the different sync points and destination rooms. At the end, their accuracy, ease of access and several other factors, along with their issues, were recorded. The testing revealed that the navigation system was not only accurate despite the lack of GPS signal, but it also detected the device motion precisely. Furthermore, the navigation system did not take much time to generate the navigation path, as the app processed the data tile by tile. The application was also able to accurately measure the ground plane along with the walls, perfectly overlaying the navigation line. However, a few observations indicated various factors affected the accuracy of the navigation, and testing revealed areas where major improvements can be made to improve both accuracy and ease of access.

Russu, Paolo, Demontis, Ambra, Biggio, Battista, Fumera, Giorgio, Roli, Fabio.  2016.  Secure Kernel Machines Against Evasion Attacks. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :59–69.

Machine learning is widely used in security-sensitive settings like spam and malware detection, although it has been shown that malicious data can be carefully modified at test time to evade detection. To overcome this limitation, adversary-aware learning algorithms have been developed, exploiting robust optimization and game-theoretical models to incorporate knowledge of potential adversarial data manipulations into the learning algorithm. Despite these techniques have been shown to be effective in some adversarial learning tasks, their adoption in practice is hindered by different factors, including the difficulty of meeting specific theoretical requirements, the complexity of implementation, and scalability issues, in terms of computational time and space required during training. In this work, we aim to develop secure kernel machines against evasion attacks that are not computationally more demanding than their non-secure counterparts. In particular, leveraging recent work on robustness and regularization, we show that the security of a linear classifier can be drastically improved by selecting a proper regularizer, depending on the kind of evasion attack, as well as unbalancing the cost of classification errors. We then discuss the security of nonlinear kernel machines, and show that a proper choice of the kernel function is crucial. We also show that unbalancing the cost of classification errors and varying some kernel parameters can further improve classifier security, yielding decision functions that better enclose the legitimate data. Our results on spam and PDF malware detection corroborate our analysis.

Russu, Paolo, Demontis, Ambra, Biggio, Battista, Fumera, Giorgio, Roli, Fabio.  2016.  Secure Kernel Machines against Evasion Attacks. Proceeding AISec '16 Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security Pages 59-69 .

Machine learning is widely used in security-sensitive settings like spam and malware detection, although it has been shown that malicious data can be carefully modified at test time to evade detection. To overcome this limitation, adversary-aware learning algorithms have been developed, exploiting robust optimization and game-theoretical models to incorporate knowledge of potential adversarial data manipulations into the learning algorithm. Despite these techniques have been shown to be effective in some adversarial learning tasks, their adoption in practice is hindered by different factors, including the difficulty of meeting specific theoretical requirements, the complexity of implementation, and scalability issues, in terms of computational time and space required during training. In this work, we aim to develop secure kernel machines against evasion attacks that are not computationally more demanding than their non-secure counterparts. In particular, leveraging recent work on robustness and regularization, we show that the security of a linear classifier can be drastically improved by selecting a proper regularizer, depending on the kind of evasion attack, as well as unbalancing the cost of classification errors. We then discuss the security of nonlinear kernel machines, and show that a proper choice of the kernel function is crucial. We also show that unbalancing the cost of classification errors and varying some kernel parameters can further improve classifier security, yielding decision functions that better enclose the legitimate data. Our results on spam and PDF malware detection corroborate our analysis.

Russo, Alessio, Proutiere, Alexandre.  2021.  Minimizing Information Leakage of Abrupt Changes in Stochastic Systems. 2021 60th IEEE Conference on Decision and Control (CDC). :2750—2757.
This work investigates the problem of analyzing privacy of abrupt changes for general Markov processes. These processes may be affected by changes, or exogenous signals, that need to remain private. Privacy refers to the disclosure of information of these changes through observations of the underlying Markov chain. In contrast to previous work on privacy, we study the problem for an online sequence of data. We use theoretical tools from optimal detection theory to motivate a definition of online privacy based on the average amount of information per observation of the stochastic system in consideration. Two cases are considered: the full-information case, where the eavesdropper measures all but the signals that indicate a change, and the limited-information case, where the eavesdropper only measures the state of the Markov process. For both cases, we provide ways to derive privacy upper-bounds and compute policies that attain a higher privacy level. It turns out that the problem of computing privacy-aware policies is concave, and we conclude with some examples and numerical simulations for both cases.
Russell, S., Abdelzaher, T., Suri, N..  2019.  Multi-Domain Effects and the Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :724—730.

This paper reviews the definitions and characteristics of military effects, the Internet of Battlefield Things (IoBT), and their impact on decision processes in a Multi-Domain Operating environment (MDO). The aspects of contemporary military decision-processes are illustrated and an MDO Effect Loop decision process is introduced. We examine the concept of IoBT effects and their implications in MDO. These implications suggest that when considering the concept of MDO, as a doctrine, the technological advances of IoBTs empower enhancements in decision frameworks and increase the viability of novel operational approaches and options for military effects.

Russell, Alexander, Tang, Qiang, Yung, Moti, Zhou, Hong-Sheng.  2017.  Generic Semantic Security Against a Kleptographic Adversary. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :907–922.

Notable recent security incidents have generated intense interest in adversaries which attempt to subvert–-perhaps covertly–-crypto$\backslash$-graphic algorithms. In this paper we develop (IND-CPA) Semantically Secure encryption in this challenging setting. This fundamental encryption primitive has been previously studied in the "kleptographic setting," though existing results must relax the model by introducing trusted components or otherwise constraining the subversion power of the adversary: designing a Public Key System that is kletographically semantically secure (with minimal trust) has remained elusive to date. In this work, we finally achieve such systems, even when all relevant cryptographic algorithms are subject to adversarial (kleptographic) subversion. To this end we exploit novel inter-component randomized cryptographic checking techniques (with an offline checking component), combined with common and simple software engineering modular programming techniques (applied to the system's black box specification level). Moreover, our methodology yields a strong generic technique for the preservation of any semantically secure cryptosystem when incorporated into the strong kleptographic adversary setting.

Rüsch, Signe, Schürmann, Dominik, Kapitza, Rüdiger, Wolf, Lars.  2017.  Forward Secure Delay-Tolerant Networking. Proceedings of the 12th Workshop on Challenged Networks. :7–12.

Delay-Tolerant Networks exhibit highly asynchronous connections often routed over many mobile hops before reaching its intended destination. The Bundle Security Protocol has been standardized providing properties such as authenticity, integrity, and confidentiality of bundles using traditional Public-Key Cryptography. Other protocols based on Identity-Based Cryptography have been proposed to reduce the key distribution overhead. However, in both schemes, secret keys are usually valid for several months. Thus, a secret key extracted from a compromised node allows for decryption of past communications since its creation. We solve this problem and propose the first forward secure protocol for Delay-Tolerant Networking. For this, we apply the Puncturable Encryption construction designed by Green and Miers, integrate it into the Bundle Security Protocol and adapt its parameters for different highly asynchronous scenarios. Finally, we provide performance measurements and discuss their impact.

Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.

Rupasinghe, R. A. A., Padmasiri, D. A., Senanayake, S. G. M. P., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Wijayakulasooriya, J. V..  2017.  Dynamic clustering for event detection and anomaly identification in video surveillance. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). :1–6.

This work introduces concepts and algorithms along with a case study validating them, to enhance the event detection, pattern recognition and anomaly identification results in real life video surveillance. The motivation for the work underlies in the observation that human behavioral patterns in general continuously evolve and adapt with time, rather than being static. First, limitations in existing work with respect to this phenomena are identified. Accordingly, the notion and algorithms of Dynamic Clustering are introduced in order to overcome these drawbacks. Correspondingly, we propose the concept of maintaining two separate sets of data in parallel, namely the Normal Plane and the Anomaly Plane, to successfully achieve the task of learning continuously. The practicability of the proposed algorithms in a real life scenario is demonstrated through a case study. From the analysis presented in this work, it is evident that a more comprehensive analysis, closely following human perception can be accomplished by incorporating the proposed notions and algorithms in a video surveillance event.

Ruohonen, Jukka, Leppänen, Ville.  2016.  On the Design of a Simple Network Resolver for DNS Mining. Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. :105–112.

The domain name system (DNS) offers an ideal distributed database for big data mining related to different cyber security questions. Besides infrastructural problems, scalability issues, and security challenges related to the protocol itself, information from DNS is often required also for more nuanced cyber security questions. Against this backdrop, this paper discusses the fundamental characteristics of DNS in relation to cyber security and different research prototypes designed for passive but continuous DNS-based monitoring of domains and addresses. With this discussion, the paper also illustrates a few general software design aspects.

Ruohonen, Jukka, Hjerppe, Kalle, Rindell, Kalle.  2021.  A Large-Scale Security-Oriented Static Analysis of Python Packages in PyPI. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—10.
Different security issues are a common problem for open source packages archived to and delivered through software ecosystems. These often manifest themselves as software weaknesses that may lead to concrete software vulnerabilities. This paper examines various security issues in Python packages with static analysis. The dataset is based on a snapshot of all packages stored to the Python Package Index (PyPI). In total, over 197 thousand packages and over 749 thousand security issues are covered. Even under the constraints imposed by static analysis, (a) the results indicate prevalence of security issues; at least one issue is present for about 46% of the Python packages. In terms of the issue types, (b) exception handling and different code injections have been the most common issues. The subprocess module stands out in this regard. Reflecting the generally small size of the packages, (c) software size metrics do not predict well the amount of issues revealed through static analysis. With these results and the accompanying discussion, the paper contributes to the field of large-scale empirical studies for better understanding security problems in software ecosystems.
Ruohonen, Jukka, Šćepanović, Sanja, Hyrynsalmi, Sami, Mishkovski, Igor, Aura, Tuomas, Leppänen, Ville.  2016.  Correlating File-based Malware Graphs Against the Empirical Ground Truth of DNS Graphs. Proccedings of the 10th European Conference on Software Architecture Workshops. :30:1–30:6.

This exploratory empirical paper investigates whether the sharing of unique malware files between domains is empirically associated with the sharing of Internet Protocol (IP) addresses and the sharing of normal, non-malware files. By utilizing a graph theoretical approach with a web crawling dataset from F-Secure, the paper finds no robust statistical associations, however. Unlike what might be expected from the still continuing popularity of shared hosting services, the sharing of IP addresses through the domain name system (DNS) seems to neither increase nor decrease the sharing of malware files. In addition to these exploratory empirical results, the paper contributes to the field of DNS mining by elaborating graph theoretical representations that are applicable for analyzing different network forensics problems.

Rungger, Matthias, Zamani, Majid.  2018.  Compositional Construction of Approximate Abstractions of Interconnected Control Systems. IEEE Transactions on Control of Network Systems. 5:116—127.

We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.

Runge, Isabel Madeleine, Kolla, Reiner.  2017.  MCGC: A Network Coding Approach for Reliable Large-Scale Wireless Networks. Proceedings of the First ACM International Workshop on the Engineering of Reliable, Robust, and Secure Embedded Wireless Sensing Systems. :16–23.

The application of mobile Wireless Sensor Networks (WSNs) with a big amount of participants poses many challenges. For instance, high transmission loss rates which are caused i.a. by collisions might occur. Additionally, WSNs frequently operate under harsh conditions, where a high probability of link or node failures is inherently given. This leads to reliable data maintenance being a key issue. Existing approaches which were developed to keep data dependably in WSNs often either perform well in highly dynamic or in completely static scenarios, or require complex calculations. Herein, we present the Network Coding based Multicast Growth Codes (MCGC), which represent a solution for reliable data maintenance in large-scale WSNs. MCGC are able to tolerate high fault rates and reconstruct more originally collected data in a shorter period of time than compared existing approaches. Simulation results show performance improvements of up to 75% in comparison to Growth Codes (GC). These results are achieved independently of the systems' dynamics and despite of high fault probabilities.

Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
Rullo, Antonino, Midi, Daniele, Serra, Edoardo, Bertino, Elisa.  2017.  A Game of Things: Strategic Allocation of Security Resources for IoT. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation. :185–190.
In many Internet of Thing (IoT) application domains security is a critical requirement, because malicious parties can undermine the effectiveness of IoT-based systems by compromising single components and/or communication channels. Thus, a security infrastructure is needed to ensure the proper functioning of such systems even under attack. However, it is also critical that security be at a reasonable resource and energy cost, as many IoT devices may not have sufficient resources to host expensive security tools. In this paper, we focus on the problem of efficiently and effectively securing IoT networks by carefully allocating security tools. We model our problem according to game theory, and provide a Pareto-optimal solution, in which the cost of the security infrastructure, its energy consumption, and the probability of a successful attack, are minimized. Our experimental evaluation shows that our technique improves the system robustness in terms of packet delivery rate for different network topologies.
Rullo, A., Serra, E., Bertino, E., Lobo, J..  2017.  Shortfall-Based Optimal Security Provisioning for Internet of Things. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2585–2586.

We present a formal method for computing the best security provisioning for Internet of Things (IoT) scenarios characterized by a high degree of mobility. The security infrastructure is intended as a security resource allocation plan, computed as the solution of an optimization problem that minimizes the risk of having IoT devices not monitored by any resource. We employ the shortfall as a risk measure, a concept mostly used in the economics, and adapt it to our scenario. We show how to compute and evaluate an allocation plan, and how such security solutions address the continuous topology changes that affect an IoT environment.

Rukavitsyn, A., Borisenko, K., Shorov, A..  2017.  Self-learning method for DDoS detection model in cloud computing. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :544–547.

Cloud Computing has many significant benefits like the provision of computing resources and virtual networks on demand. However, there is the problem to assure the security of these networks against Distributed Denial-of-Service (DDoS) attack. Over the past few decades, the development of protection method based on data mining has attracted many researchers because of its effectiveness and practical significance. Most commonly these detection methods use prelearned models or models based on rules. Because of this the proposed DDoS detection methods often failure in dynamically changing cloud virtual networks. In this paper, we purposed self-learning method allows to adapt a detection model to network changes. This is minimized the false detection and reduce the possibility to mark legitimate users as malicious and vice versa. The developed method consists of two steps: collecting data about the network traffic by Netflow protocol and relearning the detection model with the new data. During the data collection we separate the traffic on legitimate and malicious. The separated traffic is labeled and sent to the relearning pool. The detection model is relearned by a data from the pool of current traffic. The experiment results show that proposed method could increase efficiency of DDoS detection systems is using data mining.