Biblio
Filters: First Letter Of Last Name is W [Clear All Filters]
Design of Collaborative Control Scheme between On-chain and Off-chain Power Data. 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE). :1–6.
.
2021. The transmission and storage process for the power data in an intelligent grid has problems such as a single point of failure in the central node, low data credibility, and malicious manipulation or data theft. The characteristics of decentralization and tamper-proofing of blockchain and its distributed storage architecture can effectively solve malicious manipulation and the single point of failure. However, there are few safe and reliable data transmission methods for the significant number and various identities of users and the complex node types in the power blockchain. Thus, this paper proposes a collaborative control scheme between on-chain and off-chain power data based on the distributed oracle technology. By building a trusted on-chain transmission mechanism based on distributed oracles, the scheme solves the credibility problem of massive data transmission and interactive power data between smart contracts and off-chain physical devices safely and effectively. Analysis and discussion show that the proposed scheme can realize the collaborative control between on-chain and off-chain data efficiently, safely, and reliably.
Enhanced Game Theoretical Spectrum Sharing Method Based on Blockchain Consensus. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–7.
.
2021. The limited spectrum resources need to provide safe and efficient spectrum service for the intensive users. Malicious spectrum work nodes will affect the normal operation of the entire system. Using the blockchain model, consensus algorithm Praft based on optimized Raft is to solve the consensus problem in Byzantine environment. Message digital signatures give the spectrum node some fault tolerance and tamper resistance. Spectrum sharing among spectrum nodes is carried out in combination with game theory. The existing game theoretical algorithm does not consider the influence of spectrum occupancy of primary users and cognitive users on primary users' utility and enthusiasm at the same time. We elicits a reinforcement factor and analyzes the effect of the reinforcement factor on strategy performance. This scheme optimizes the previous strategy so that the profits of spectrum nodes are improved and a good Nash equilibrium is shown, while Praft solves the Byzantine problem left by Raft.
OCTOPOCS: Automatic Verification of Propagated Vulnerable Code Using Reformed Proofs of Concept. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :174–185.
.
2021. Addressing vulnerability propagation has become a major issue in software ecosystems. Existing approaches hold the promise of detecting widespread vulnerabilities but cannot be applied to verify effectively whether propagated vulnerable code still poses threats. We present OCTOPOCS, which uses a reformed Proof-of-Concept (PoC), to verify whether a vulnerability is propagated. Using context-aware taint analysis, OCTOPOCS extracts crash primitives (the parts used in the shared code area between the original vulnerable software and propagated software) from the original PoC. OCTOPOCS then utilizes directed symbolic execution to generate guiding inputs that direct the execution of the propagated software from the entry point to the shared code area. Thereafter, OCTOPOCS creates a new PoC by combining crash primitives and guiding inputs. It finally verifies the propagated vulnerability using the created PoC. We evaluated OCTOPOCS with 15 real-world C and C++ vulnerable software pairs, with results showing that OCTOPOCS successfully verified 14 propagated vulnerabilities.
Mixed-mode Information Flow Tracking with Compile-time Taint Semantics Extraction and Offline Replay. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
.
2021. Static information flow analysis (IFA) and dynamic information flow tracking (DIFT) have been widely employed in offline security analysis of computer programs. As security attacks become more sophisticated, there is a rising need for IFA and DIFT in production environment. However, existing systems usually deal with IFA and DIFT separately, and most DIFT systems incur significant performance overhead. We propose MIT to facilitate IFA and DIFT in online production environment. MIT offers mixed-mode information flow tracking at byte-granularity and incurs moderate runtime performance overhead. The core techniques consist of the extraction of taint semantics intermediate representation (TSIR) at compile-time and the decoupled execution of TSIR for information flow analysis. We conducted an extensive performance overhead evaluation on MIT to confirm its applicability in production environment. We also outline potential applications of MIT, including the implementation of data provenance checking and information flow based anomaly detection in real-world applications.
VulChecker: Achieving More Effective Taint Analysis by Identifying Sanitizers Automatically. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :774–782.
.
2021. The automatic detection of vulnerabilities in Web applications using taint analysis is a hot topic. However, existing taint analysis methods for sanitizers identification are too simple to find available taint transmission chains effectively. These methods generally use pre-constructed dictionaries or simple keywords to identify, which usually suffer from large false positives and false negatives. No doubt, it will have a greater impact on the final result of the taint analysis. To solve that, we summarise and classify the commonly used sanitizers in Web applications and propose an identification method based on semantic analysis. Our method can accurately and completely identify the sanitizers in the target Web applications through static analysis. Specifically, we analyse the natural semantics and program semantics of existing sanitizers, use semantic analysis to find more in Web applications. Besides, we implemented the method prototype in PHP and achieved a vulnerability detection tool called VulChecker. Then, we experimented with some popular open-source CMS frameworks. The results show that Vulchecker can accurately identify more sanitizers. In terms of vulnerability detection, VulChecker also has a lower false positive rate and a higher detection rate than existing methods. Finally, we used VulChecker to analyse the latest PHP applications. We identified several new suspicious taint data propagation chains. Before the paper was completed, we have identified four unreported vulnerabilities. In general, these results show that our approach is highly effective in improving vulnerability detection based on taint analysis.
Increasing Fuzz Testing Coverage for Smart Contracts with Dynamic Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :243–247.
.
2021. Nowadays, smart contracts manage more and more digital assets and have become an attractive target for adversaries. To prevent smart contracts from malicious attacks, a thorough test is indispensable and must be finished before deployment because smart contracts cannot be modified after being deployed. Fuzzing is an important testing approach, but most existing smart contract fuzzers can hardly solve the constraints which involve deeply nested conditional statements, resulting in low coverage. To address this problem, we propose Targy, an efficient targeted mutation strategy based on dynamic taint analysis. We obtain the taint flow by dynamic taint propagation, and generate a more accurate mutation strategy for the input parameters of functions to simultaneously satisfy all conditional statements. We implemented Targy on sFuzz with 3.6 thousand smart contracts running on Ethereum. The numbers of covered branches and detected vulnerabilities increase by 6% and 7% respectively, and the average time required for covering a branch is reduced by 11 %.
HashMTI: Scalable Mutation-based Taint Inference with Hash Records. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :84–95.
.
2021. Mutation-based taint inference (MTI) is a novel technique for taint analysis. Compared with traditional techniques that track propagations of taint tags, MTI infers a variable is tainted if its values change due to input mutations, which is lightweight and conceptually sound. However, there are 3 challenges to its efficiency and scalability: (1) it cannot efficiently record variable values to monitor their changes; (2) it consumes a large amount of memory monitoring variable values, especially on complex programs; and (3) its excessive memory overhead leads to a low hit ratio of CPU cache, which slows down the speed of taint inference. This paper presents an efficient and scalable solution named HashMTI. We first explain the above challenges based on 4 observations. Motivated by these challenges, we propose a hash record scheme to efficiently monitor changes in variable values and significantly reduce the memory overhead. The scheme is based on our specially selected and optimized hash functions that possess 3 crucial properties. Moreover, we propose the DoubleMutation strategy, which applies additional mutations to mitigate the limitation of the hash record and detect more taint information. We implemented a prototype of HashMTI and evaluated it on 18 real-world programs and 4 LAVA-M programs. Compared with the baseline OrigMTI, HashMTI significantly reduces the overhead while having similar accuracy. It achieves a speedup of 2.5X to 23.5X and consumes little memory which is on average 70.4 times less than that of OrigMTI.
ConDySTA: Context-Aware Dynamic Supplement to Static Taint Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :796–812.
.
2021. Static taint analyses are widely-applied techniques to detect taint flows in software systems. Although they are theoretically conservative and de-signed to detect all possible taint flows, static taint analyses almost always exhibit false negatives due to a variety of implementation limitations. Dynamic programming language features, inaccessible code, and the usage of multiple programming languages in a software project are some of the major causes. To alleviate this problem, we developed a novel approach, DySTA, which uses dynamic taint analysis results as additional sources for static taint analysis. However, naïvely adding sources causes static analysis to lose context sensitivity and thus produce false positives. Thus, we developed a hybrid context matching algorithm and corresponding tool, ConDySTA, to preserve context sensitivity in DySTA. We applied REPRODROID [1], a comprehensive benchmarking framework for Android analysis tools, to evaluate ConDySTA. The results show that across 28 apps (1) ConDySTA was able to detect 12 out of 28 taint flows which were not detected by any of the six state-of-the-art static taint analyses considered in ReproDroid, and (2) ConDySTA reported no false positives, whereas nine were reported by DySTA alone. We further applied ConDySTA and FlowDroid to 100 top Android apps from Google Play, and ConDySTA was able to detect 39 additional taint flows (besides 281 taint flows found by FlowDroid) while preserving the context sensitivity of FlowDroid.
Deeply Multi-channel guided Fusion Mechanism for Natural Scene Text Detection. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :149–156.
.
2021. Scene text detection methods have developed greatly in the past few years. However, due to the limitation of the diversity of the text background of natural scene, the previous methods often failed when detecting more complicated text instances (e.g., super-long text and arbitrarily shaped text). In this paper, a text detection method based on multi -channel bounding box fusion is designed to address the problem. Firstly, the convolutional neural network is used as the basic network for feature extraction, including shallow text feature map and deep semantic text feature map. Secondly, the whole convolutional network is used for upsampling of feature map and fusion of feature map at each layer, so as to obtain pixel-level text and non-text classification results. Then, two independent text detection boxes channels are designed: the boundary box regression channel and get the bounding box directly on the score map channel. Finally, the result is obtained by combining multi-channel boundary box fusion mechanism with the detection box of the two channels. Experiments on ICDAR2013 and ICDAR2015 demonstrate that the proposed method achieves competitive results in scene text detection.
Long Text Filtering in English Translation based on LSTM Semantic Association. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :740–743.
.
2021. Translation studies is one of the fastest growing interdisciplinary research fields in the world today. Business English is an urgent research direction in the field of translation studies. To some extent, the quality of business English translation directly determines the success or failure of international trade and the economic benefits. On the basis of sequence information encoding and decoding model of LSTM, this paper proposes a strategy combining attention mechanism with bidirectional LSTM model to handle the question of feature extraction of text information. The proposed method reduces the semantic complexity and improves the overall correlation accuracy. The experimental results show its advantages.
Hardware Trojan Detection Method for Inspecting Integrated Circuits Based on Machine Learning. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :432–436.
.
2021. Nowadays malicious vendors can easily insert hardware Trojans into integrated circuit chips as the entire integrated chip supply chain involves numerous design houses and manufacturers on a global scale. It is thereby becoming a necessity to expose any possible hardware Trojans, if they ever exist in a chip. A typical Trojan circuit is made of a trigger and a payload that are interconnected with a trigger net. As trigger net can be viewed as the signature of a hardware Trojan, in this paper, we propose a gate-level hardware Trojan detection method and model that can be applied to screen the entire chip for trigger nets. In specific, we extract the trigger-net features for each net from known netlists and use the machine learning method to train multiple detection models according to the trigger modes. The detection models are used to identify suspicious trigger nets from the netlist of the integrated circuit under detection, and score each net in terms of suspiciousness value. By flagging the top 2% suspicious nets with the highest suspiciousness values, we shall be able to detect majority hardware Trojans, with an average accuracy rate of 96%.
Smart Contract Vulnerability Detection Using Code Representation Fusion. 2021 28th Asia-Pacific Software Engineering Conference (APSEC). :564–565.
.
2021. At present, most smart contract vulnerability detection use manually-defined patterns, which is time-consuming and far from satisfactory. To address this issue, researchers attempt to deploy deep learning techniques for automatic vulnerability detection in smart contracts. Nevertheless, current work mostly relies on a single code representation such as AST (Abstract Syntax Tree) or code tokens to learn vulnerability characteristics, which might lead to incompleteness of learned semantics information. In addition, the number of available vulnerability datasets is also insufficient. To address these limitations, first, we construct a dataset covering most typical types of smart contract vulnerabilities, which can accurately indicate the specific row number where a vulnerability may exist. Second, for each single code representation, we propose a novel way called AFS (AST Fuse program Slicing) to fuse code characteristic information. AFS can fuse the structured information of AST with program slicing information and detect vulnerabilities by learning new vulnerability characteristic information.
Representation vs. Model: What Matters Most for Source Code Vulnerability Detection. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :647–653.
.
2021. Vulnerabilities in the source code of software are critical issues in the realm of software engineering. Coping with vulnerabilities in software source code is becoming more challenging due to several aspects of complexity and volume. Deep learning has gained popularity throughout the years as a means of addressing such issues. In this paper, we propose an evaluation of vulnerability detection performance on source code representations and evaluate how Machine Learning (ML) strategies can improve them. The structure of our experiment consists of 3 Deep Neural Networks (DNNs) in conjunction with five different source code representations; Abstract Syntax Trees (ASTs), Code Gadgets (CGs), Semantics-based Vulnerability Candidates (SeVCs), Lexed Code Representations (LCRs), and Composite Code Representations (CCRs). Experimental results show that employing different ML strategies in conjunction with the base model structure influences the performance results to a varying degree. However, ML-based techniques suffer from poor performance on class imbalance handling when used in conjunction with source code representations for software vulnerability detection.
Feature Extraction Method for Cross-Architecture Binary Vulnerability Detection. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :834–836.
.
2021. Vulnerability detection identifies defects in various commercial software. Because most vulnerability detection methods are based on the source code, they are not useful if the source code is unavailable. In this paper, we propose a binary vulnerability detection method and use our tool named BVD that extracts binary features with the help of an intermediate language and then detects the vulnerabilities using an embedding model. Sufficiently robust features allow the binaries compiled in cross-architecture to be compared. Consequently, a similarity evaluation provides more accurate results.
Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision. 2021 IEEE Symposium on Security and Privacy (SP). :160–175.
.
2021. Autonomous vehicles increasingly exploit computer-vision-based object detection systems to perceive environments and make critical driving decisions. To increase the quality of images, image stabilizers with inertial sensors are added to alleviate image blurring caused by camera jitters. However, such a trend opens a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of the emerging image stabilizer hardware susceptible to acoustic manipulation and the object detection algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even if the camera is stable. The blurred images can then induce object misclassification affecting safety-critical decision making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks, i.e., hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against four academic object detectors (YOLO V3/V4/V5 and Fast R-CNN), and one commercial detector (Apollo). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.
Lightweight Privacy-preserving Medical Diagnosis in Edge Computing. 2021 IEEE World Congress on Services (SERVICES). :9–9.
.
2021. In the era of machine learning, mobile users are able to submit their symptoms to doctors at any time, anywhere for personal diagnosis. It is prevalent to exploit edge computing for real-time diagnosis services in order to reduce transmission latency. Although data-driven machine learning is powerful, it inevitably compromises privacy by relying on vast amounts of medical data to build a diagnostic model. Therefore, it is necessary to protect data privacy without accessing local data. However, the blossom has also been accompanied by various problems, i.e., the limitation of training data, vulnerabilities, and privacy concern. As a solution to these above challenges, in this paper, we design a lightweight privacy-preserving medical diagnosis mechanism on edge. Our method redesigns the extreme gradient boosting (XGBoost) model based on the edge-cloud model, which adopts encrypted model parameters instead of local data to reduce amounts of ciphertext computation to plaintext computation, thus realizing lightweight privacy preservation on resource-limited edges. Additionally, the proposed scheme is able to provide a secure diagnosis on edge while maintaining privacy to ensure an accurate and timely diagnosis. The proposed system with secure computation could securely construct the XGBoost model with lightweight overhead, and efficiently provide a medical diagnosis without privacy leakage. Our security analysis and experimental evaluation indicate the security, effectiveness, and efficiency of the proposed system.
Proactive Alarming-enabled Path Planning for Multi-AUV-based Underwater IoT Systems. 2021 Computing, Communications and IoT Applications (ComComAp). :263—267.
.
2021. The ongoing expansion of underwater Internet of Things techniques promote diverse categories of maritime intelligent systems, e.g., Underwater Acoustic Sensor Networks (UASNs), Underwater Wireless Networks (UWNs), especially multiple Autonomous Underwater Vehicle (AUV) based UWNs have produced many civil and military applications. To enhance the network management and scalability, in this paper, the technique of Software-Defined Networking (SDN) technique is introduced, leading to the paradigm of Software-Defined multi-AUV-based UWNs (SD-UWNs). With SD-UWNs, the network architecture is divided into three functional layers: data layer, control layer, and application layer, and the network administration is re-defined by a framework of software-defined beacon. To manage the network, a control model based on artificial potential field and network topology theory is constructed. On account of the efficient data sharing ability of SD-UWNs, a proactive alarming-enabled path planning scheme is proposed, wherein all potential categories of obstacle avoidance scenes are taken into account. Evaluation results indicate that the proposed SD-UWN is more efficient in scheduling the cooperative network function than the traditional approaches and can secure exact path planning.
Secure underwater optical communications based on quantum technologies. 2021 19th International Conference on Optical Communications and Networks (ICOCN). :1—3.
.
2021. Underwater wireless optical communications are studied through single photon detection, photon states modulation and quantum key encryption. These studies will promote the development of optical communication applications in underwater vehicles and underwater sensor networks.
Universal Smart Power Module Concept with High-speed Controller for Simplification of Power Conversion System Design. 2021 IEEE 12th Energy Conversion Congress Exposition - Asia (ECCE-Asia). :2484–2489.
.
2021. This paper proposes the modular power conversion systems based on an Universal Smart Power Module (USPM). In this concept, the Power Electronics Building Block (PEBB) is improved the flexibility and the expandability by integrating a high-speed power electronics controller, input/output filters among each USPM to realize the simplification of the power electronics design. The original point of USPM is that each power module operates independently because a high-speed power electronics controller is implemented on each power module. The power modules of PEBB are typically configured by the main power circuits and the gate driver. Therefore, the controller has to be designed specifically according to various applications although the advantages of PEBB are high flexibility and user-friendly. The contribution of USPM is the simplification of the system design including power electronics controller. On the other hand, autonomous distributed systems require the control method to suppress the interference in each module. In this paper, the configuration of USPM, example of the USPM system, and detail of the control method are introduced.
Waveform Vector Embedding for Incipient Fault Detection in Distribution Systems. 2021 IEEE Sustainable Power and Energy Conference (iSPEC). :3873–3879.
.
2021. Incipient faults are faults at their initial stages and occur before permanent faults occur. It is very important to detect incipient faults timely and accurately for the safe and stable operation of the power system. At present, most of the detection methods for incipient faults are designed for the detection of a single device’s incipient fault, but a unified detection for multiple devices cannot be achieved. In order to increase the fault detection capability and enable detection expandability, this paper proposes a waveform vector embedding (WVE) method to embed incipient fault waveforms of different devices into waveform vectors. Then, we utilize the waveform vectors and formulate them into a waveform dictionary. To improve the efficiency of embedding the waveform signature into the learning process, we build a loss function that prevents overflow and overfitting of softmax function during when learning power system waveforms. We use the real data collected from an IEEE Power & Energy Society technical report to verify the feasibility of this method. For the result verification, we compare the superiority of this method with Logistic Regression and Support Vector Machine in different scenarios.
Design of Intermediate Frequency Module of Microwave Radiometer Based on Polyphase Filter Bank. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :7984–7987.
.
2021. In this work, an IF(intermediate frequency) module of a hyperspectral microwave radiometer based on a polyphase filter bank (PFB) and Discrete Fourier Transformation (DFT)is introduced. The IF module is designed with an 800MSPS sampling-rate ADC and a Xilinx Virtex-7 FPGA. The module can achieve 512 channels and a bandwidth of 400M and process all the sampled data in real-time. The test results of this module are given and analyzed, such as linearity, accuracy, etc. It can be used in various applications of microwave remote sensing. The system has strong expandability.
A framework for the automation of testing computer vision systems. 2021 IEEE/ACM International Conference on Automation of Software Test (AST). :121–124.
.
2021. Vision systems, i.e., systems that enable the detection and tracking of objects in images, have gained substantial importance over the past decades. They are used in quality assurance applications, e.g., for finding surface defects in products during manufacturing, surveillance, but also automated driving, requiring reliable behavior. Interestingly, there is only little work on quality assurance and especially testing of vision systems in general. In this paper, we contribute to the area of testing vision software, and present a framework for the automated generation of tests for systems based on vision and image recognition with the focus on easy usage, uniform usability and expandability. The framework makes use of existing libraries for modifying the original images and to obtain similarities between the original and modified images. We show how such a framework can be used for testing a particular industrial application on identifying defects on riblet surfaces and present preliminary results from the image classification domain.
Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
.
2021. Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
.
2021. In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Research on Image Encryption Technology Based on Hyperchaotic System and DNA Encoding. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :140—144.
.
2021. This paper proposes an image encryption technology based on six-dimensional hyperchaotic system and DNA encoding, in order to solve the problem of low security in existing image encryption algorithms. First of all, the pixel values of the R, G, and B channels are divided into blocks and zero-filled. Secondly, the chaotic sequence generated by the six-dimensional hyperchaotic system and logistic mapping is used for DNA coding and DNA operations. Third, the decoded three-channel pixel values are scrambled through diagonal traversal. Finally, merge the channels to generate a ciphertext image. According to simulation experiments and related performance analysis, the algorithm has high security performance, good encryption and decryption effects, and can effectively resist various common attack methods.