Biblio
The newly emerging cyber-physical systems (CPS) discover events from multiple, distributed sources with multiple levels of detail and heterogeneous data format, which may not be compare and integrate, and turn to hardly combined determination for action. While existing efforts have mainly focused on investigating a uniform CPS event representation with spatio-temporal attributes, in this paper we propose a new event model with two-layer structure, Basic Event Model (BEM) and Extended Information Set (EIS). A BEM could be extended with EIS by semantic adaptor for spatio-temporal and other attribution enhancement. In particular, we define the event process functions, like event attribution extraction and composition determination, for CPS action trigger exploit the Complex Event Process (CEP) engine Esper. Examples show that such event model provides several advantages in terms of extensibility, flexibility and heterogeneous support, and lay the foundations of event-based system design in CPS.
Biometrics is attracting increasing attention in privacy and security concerned issues, such as access control and remote financial transaction. However, advanced forgery and spoofing techniques are threatening the reliability of conventional biometric modalities. This has been motivating our investigation of a novel yet promising modality transient evoked otoacoustic emission (TEOAE), which is an acoustic response generated from cochlea after a click stimulus. Unlike conventional modalities that are easily accessible or captured, TEOAE is naturally immune to replay and falsification attacks as a physiological outcome from human auditory system. In this paper, we resort to wavelet analysis to derive the time-frequency representation of such nonstationary signal, which reveals individual uniqueness and long-term reproducibility. A machine learning technique linear discriminant analysis is subsequently utilized to reduce intrasubject variability and further capture intersubject differentiation features. Considering practical application, we also introduce a complete framework of the biometric system in both verification and identification modes. Comparative experiments on a TEOAE data set of biometric setting show the merits of the proposed method. Performance is further improved with fusion of information from both ears.
Recently, the demand for more robust protection against unauthorized use of mobile devices has been rapidly growing. This paper presents a novel biometric modality Transient Evoked Otoacoustic Emission (TEOAE) for mobile security. Prior works have investigated TEOAE for biometrics in a setting where an individual is to be identified among a pre-enrolled identity gallery. However, this limits the applicability to mobile environment, where attacks in most cases are from imposters unknown to the system before. Therefore, we employ an unsupervised learning approach based on Autoencoder Neural Network to tackle such blind recognition problem. The learning model is trained upon a generic dataset and used to verify an individual in a random population. We also introduce the framework of mobile biometric system considering practical application. Experiments show the merits of the proposed method and system performance is further evaluated by cross-validation with an average EER 2.41% achieved.
It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.
It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.
It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.
Currently, mobile botnet attacks have shifted from computers to smartphones due to its functionality, ease to exploit, and based on financial intention. Mostly, it attacks Android due to its popularity and high usage among end users. Every day, more and more malicious mobile applications (apps) with the botnet capability have been developed to exploit end users' smartphones. Therefore, this paper presents a new mobile botnet classification based on permission and Application Programming Interface (API) calls in the smartphone. This classification is developed using static analysis in a controlled lab environment and the Drebin dataset is used as the training dataset. 800 apps from the Google Play Store have been chosen randomly to test the proposed classification. As a result, 16 permissions and 31 API calls that are most related with mobile botnet have been extracted using feature selection and later classified and tested using machine learning algorithms. The experimental result shows that the Random Forest Algorithm has achieved the highest detection accuracy of 99.4% with the lowest false positive rate of 16.1% as compared to other machine learning algorithms. This new classification can be used as the input for mobile botnet detection for future work, especially for financial matters.
Modbus over TCP/IP is one of the most popular industrial network protocol that are widely used in critical infrastructures. However, vulnerability of Modbus TCP protocol has attracted widely concern in the public. The traditional intrusion detection methods can identify some intrusion behaviors, but there are still some problems. In this paper, we present an innovative approach, SD-IDS (Stereo Depth IDS), which is designed for perform real-time deep inspection for Modbus TCP traffic. SD-IDS algorithm is composed of two parts: rule extraction and deep inspection. The rule extraction module not only analyzes the characteristics of industrial traffic, but also explores the semantic relationship among the key field in the Modbus TCP protocol. The deep inspection module is based on rule-based anomaly intrusion detection. Furthermore, we use the online test to evaluate the performance of our SD-IDS system. Our approach get a low rate of false positive and false negative.
Modern storage systems stripe redundant data across multiple nodes to provide availability guarantees against node failures. One form of data redundancy is based on XOR-based erasure codes, which use only XOR operations for encoding and decoding. In addition to tolerating failures, a storage system must also provide fast failure recovery to reduce the window of vulnerability. This work addresses the problem of speeding up the recovery of a single-node failure for general XOR-based erasure codes. We propose a replace recovery algorithm, which uses a hill-climbing technique to search for a fast recovery solution, such that the solution search can be completed within a short time period. We further extend the algorithm to adapt to the scenario where nodes have heterogeneous capabilities (e.g., processing power and transmission bandwidth). We implement our replace recovery algorithm atop a parallelized architecture to demonstrate its feasibility. We conduct experiments on a networked storage system testbed, and show that our replace recovery algorithm uses less recovery time than the conventional recovery approach.
Security companies have recently realised that mining massive amounts of security data can help generate actionable intelligence and improve their understanding of Internet attacks. In particular, attack attribution and situational understanding are considered critical aspects to effectively deal with emerging, increasingly sophisticated Internet attacks. This requires highly scalable analysis tools to help analysts classify, correlate and prioritise security events, depending on their likely impact and threat level. However, this security data mining process typically involves a considerable amount of features interacting in a non-obvious way, which makes it inherently complex. To deal with this challenge, we introduce MR-TRIAGE, a set of distributed algorithms built on MapReduce that can perform scalable multi-criteria data clustering on large security data sets and identify complex relationships hidden in massive datasets. The MR-TRIAGE workflow is made of a scalable data summarisation, followed by scalable graph clustering algorithms in which we integrate multi-criteria evaluation techniques. Theoretical computational complexity of the proposed parallel algorithms are discussed and analysed. The experimental results demonstrate that the algorithms can scale well and efficiently process large security datasets on commodity hardware. Our approach can effectively cluster any type of security events (e.g., spam emails, spear-phishing attacks, etc) that are sharing at least some commonalities among a number of predefined features.
Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.
Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-SOMMELIER+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-SOMMELIER+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels.
Signcryption is a cryptographic primitive that simultaneously realizes both the functions of public key encryption and digital signature in a logically single step, and with a cost significantly lower than that required by the traditional “signature and encryption” approach. Recently, an efficient certificateless signcryption scheme without using bilinear pairings was proposed by Zhu et al., which is claimed secure based on the assumptions that the compute Diffie-Hellman problem and the discrete logarithm problem are difficult. Although some security arguments were provided to show the scheme is secure, in this paper, we find that the signcryption construction due to Zhu et al. is not as secure as claimed. Specifically, we describe an adversary that can break the IND-CCA2 security of the scheme without any Unsigncryption query. Moreover, we demonstrate that the scheme is insecure against key replacement attack by describing a concrete attack approach.
Abnormal crowd behavior detection is an important research issue in video processing and computer vision. In this paper we introduce a novel method to detect abnormal crowd behaviors in video surveillance based on interest points. A complex network-based algorithm is used to detect interest points and extract the global texture features in scenarios. The performance of the proposed method is evaluated on publicly available datasets. We present a detailed analysis of the characteristics of the crowd behavior in different density crowd scenes. The analysis of crowd behavior features and simulation results are also demonstrated to illustrate the effectiveness of our proposed method.