Visible to the public Biblio

Found 795 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y [Z]   [Show ALL]
Z
Z. Jiang, W. Quan, J. Guan, H. Zhang.  2015.  "A SINET-based communication architecture for Smart Grid". 2015 International Telecommunication Networks and Applications Conference (ITNAC). :298-301.

Communication architecture is a crucial component in smart grid. Most of the previous researches have been focused on the traditional Internet and proposed numerous evolutionary designs. However, the traditional network architecture has been reported with multiple inherent shortcomings, which bring unprecedented challenges for the Smart Grid. Moreover, the smart network architecture for the future Smart Grid is still unexplored. In this context, this paper proposes a clean-slate communication approach to boost the development of smart grid in the respective of Smart Identifier Network (SINET), named SI4SG. It also designs the service resolution mechanism and the ns-3 based simulating tool for the proposed communication architecture.

Z. Zhu, M. B. Wakin.  2015.  "Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences". 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). :41-45.

We present a new method for mitigating wall return and a new greedy algorithm for detecting stationary targets after wall clutter has been cancelled. Given limited measurements of a stepped-frequency radar signal consisting of both wall and target return, our objective is to detect and localize the potential targets. Modulated Discrete Prolate Spheroidal Sequences (DPSS's) form an efficient basis for sampled bandpass signals. We mitigate the wall clutter efficiently within the compressive measurements through the use of a bandpass modulated DPSS basis. Then, in each step of an iterative algorithm for detecting the target positions, we use a modulated DPSS basis to cancel nearly all of the target return corresponding to previously selected targets. With this basis, we improve upon the target detection sensitivity of a Fourier-based technique.

Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

Zabib, D. Z., Levi, I., Fish, A., Keren, O..  2017.  Secured Dual-Rail-Precharge Mux-based (DPMUX) symmetric-logic for low voltage applications. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–2.

Hardware implementations of cryptographic algorithms may leak information through numerous side channels, which can be used to reveal the secret cryptographic keys, and therefore compromise the security of the algorithm. Power Analysis Attacks (PAAs) [1] exploit the information leakage from the device's power consumption (typically measured on the supply and/or ground pins). Digital circuits consume dynamic switching energy when data propagate through the logic in each new calculation (e.g. new clock cycle). The average power dissipation of a design can be expressed by: Ptot(t) = α · (Pd(t) + Ppvt(t)) (1) where α is the activity factor (the probability that the gate will switch) and depends on the probability distribution of the inputs to the combinatorial logic. This induces a linear relationship between the power and the processed data [2]. Pd is the deterministic power dissipated by the switching of the gate, including any parasitic and intrinsic capacitances, and hence can be evaluated prior to manufacturing. Ppvt is the change in expected power consumption due to nondeterministic parameters such as process variations, mismatch, temperature, etc. In this manuscript, we describe the design of logic gates that induce data-independent (constant) α and Pd.

Zabihimayvan, Mahdieh, Doran, Derek.  2019.  Fuzzy Rough Set Feature Selection to Enhance Phishing Attack Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-6.

Phishing as one of the most well-known cybercrime activities is a deception of online users to steal their personal or confidential information by impersonating a legitimate website. Several machine learning-based strategies have been proposed to detect phishing websites. These techniques are dependent on the features extracted from the website samples. However, few studies have actually considered efficient feature selection for detecting phishing attacks. In this work, we investigate an agreement on the definitive features which should be used in phishing detection. We apply Fuzzy Rough Set (FRS) theory as a tool to select most effective features from three benchmarked data sets. The selected features are fed into three often used classifiers for phishing detection. To evaluate the FRS feature selection in developing a generalizable phishing detection, the classifiers are trained by a separate out-of-sample data set of 14,000 website samples. The maximum F-measure gained by FRS feature selection is 95% using Random Forest classification. Also, there are 9 universal features selected by FRS over all the three data sets. The F-measure value using this universal feature set is approximately 93% which is a comparable result in contrast to the FRS performance. Since the universal feature set contains no features from third-part services, this finding implies that with no inquiry from external sources, we can gain a faster phishing detection which is also robust toward zero-day attacks.

Zachary J. Estrada, University of Illinois at Urbana-Champaign, Cuong Pham, University of Illinois at Urbana-Champaign, Fei Deng, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, Lok Yan, Air Force Research Laboratory.  2015.  Dynamic VM Dependability Monitoring Using Hypervisor Probes. 11th European Dependable Computing Conference- Dependability in Practice (EDCC 2015).

Many current VM monitoring approaches require guest OS modifications and are also unable to perform application level monitoring, reducing their value in a cloud setting. This paper introduces hprobes, a framework that allows one to dynamically monitor applications and operating systems inside a VM. The hprobe framework does not require any changes to the guest OS, which avoids the tight coupling of monitoring with its target. Furthermore, the monitors can be customized and enabled/disabled while the VM is running. To demonstrate the usefulness of this framework, we present three sample detectors: an emergency detector for a security vulnerability, an application watchdog, and an infinite-loop detector. We test our detectors on real applications and demonstrate that those detectors achieve an acceptable level of performance overhead with a high degree of flexibility.

Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.  2022.  A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Zadeh, B.Q., Handschuh, S..  2014.  Random Manhattan Indexing. Database and Expert Systems Applications (DEXA), 2014 25th International Workshop on. :203-208.

Vector space models (VSMs) are mathematically well-defined frameworks that have been widely used in text processing. In these models, high-dimensional, often sparse vectors represent text units. In an application, the similarity of vectors -- and hence the text units that they represent -- is computed by a distance formula. The high dimensionality of vectors, however, is a barrier to the performance of methods that employ VSMs. Consequently, a dimensionality reduction technique is employed to alleviate this problem. This paper introduces a new method, called Random Manhattan Indexing (RMI), for the construction of L1 normed VSMs at reduced dimensionality. RMI combines the construction of a VSM and dimension reduction into an incremental, and thus scalable, procedure. In order to attain its goal, RMI employs the sparse Cauchy random projections.

Zadig, Sean M., Tejay, Gurvirender.  2010.  Securing IS assets through hacker deterrence: A case study. 2010 eCrime Researchers Summit. :1–7.
Computer crime is a topic prevalent in both the research literature and in industry, due to a number of recent high-profile cyber attacks on e-commerce organizations. While technical means for defending against internal and external hackers have been discussed at great length, researchers have shown a distinct preference towards understanding deterrence of the internal threat and have paid little attention to external deterrence. This paper uses the criminological thesis known as Broken Windows Theory to understand how external computer criminals might be deterred from attacking a particular organization. The theory's focus upon disorder as a precursor to crime is discussed, and the notion of decreasing public IS disorder to create the illusion of strong information systems security is examined. A case study of a victim e-commerce organization is reviewed in light of the theory and implications for research and practice are discussed.
Ž
Žádník, Martin.  2022.  Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
Z
Zadsar, Masoud, Abazari, Ahmadreza, Ansari, Mostafa, Ghafouri, Mohsen, Muyeen, S. M., Blaabjerg, Frede.  2021.  Central Situational Awareness System for Resiliency Enhancement of Integrated Energy Systems. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). :1–6.
In integrated gas and electricity energy systems, a catastrophic outage in one system could propagate to other, resulting in severe service interruption like what happened in 2021 Texas Blackout. To alleviate detrimental effects of these events, a coordinated effort must be adopted between integrated energy systems. In this paper, a central situational awareness system (CSAS) is developed to improve the coordination of operational resiliency measures by facilitating information sharing between power distribution systems (PDSs) and natural gas networks (NGNs) during emergency conditions. The CSAS collects operational data of the PDS and the NGN as well as data of upcoming weather condition, extracts the most vulnerable lines and pipelines, and accordingly obtains emergency actions. The emergency actions, i.e., optimal multi-microgrid formation, scheduling of distribution energy resources (DERs), and optimal electrical and gas load shedding plan, are optimized through a coupled graph-based approach with stochastic mixed integer linear programming (MILP) model. In the proposed model, uncertainties of renewable energy resources (RESs) is also considered. Numerical results on an integrated IEEE 33-bus and 30-node NGNs demonstrate the effectiveness of proposed CSAS.
Zaeem, Razieh Nokhbeh, Anya, Safa, Issa, Alex, Nimergood, Jake, Rogers, Isabelle, Shah, Vinay, Srivastava, Ayush, Barber, K. Suzanne.  2020.  PrivacyCheck's Machine Learning to Digest Privacy Policies: Competitor Analysis and Usage Patterns. 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). :291–298.
Online privacy policies are lengthy and hard to comprehend. To address this problem, researchers have utilized machine learning (ML) to devise tools that automatically summarize online privacy policies for web users. One such tool is our free and publicly available browser extension, PrivacyCheck. In this paper, we enhance PrivacyCheck by adding a competitor analysis component-a part of PrivacyCheck that recommends other organizations in the same market sector with better privacy policies. We also monitored the usage patterns of about a thousand actual PrivacyCheck users, the first work to track the usage and traffic of an ML-based privacy analysis tool. Results show: (1) there is a good number of privacy policy URLs checked repeatedly by the user base; (2) the users are particularly interested in privacy policies of software services; and (3) PrivacyCheck increased the number of times a user consults privacy policies by 80%. Our work demonstrates the potential of ML-based privacy analysis tools and also sheds light on how these tools are used in practice to give users actionable knowledge they can use to pro-actively protect their privacy.
Zaher, A. A., Hussain, G. Amjad.  2019.  Chaos-based Cryptography for Transmitting Multimedia Data over Public Channels. 2019 7th International Conference on Information and Communication Technology (CoICT). :1–6.

This paper explores using chaos-based cryptography for transmitting multimedia data, mainly speech and voice messages, over public communication channels, such as the internet. The secret message to be transmitted is first converted into a one-dimensional time series, that can be cast in a digital/binary format. The main feature of the proposed technique is mapping the two levels of every corresponding bit of the time series into different multiple chaotic orbits, using a simple encryption function. This one-to-many mapping robustifies the encryption technique and makes it resilient to crypto-analysis methods that rely on associating the energy level of the signal into two binary levels, using return map attacks. A chaotic nonautonomous Duffing oscillator is chosen to implement the suggested technique, using three different parameters that are assumed unknown at the receiver side. Synchronization between the transmitter and the receiver and reconstructing the secret message, at the receiver side, is done using a Lyapunov-based adaptive technique. Achieving stable operation, tuning the required control gains, as well as effective utilization of the bandwidth of the public communication channel are investigated. Two different case studies are presented; the first one deals with text that can be expressed as 8-bit ASCII code, while the second one corresponds to an analog acoustic signal that corresponds to the voice associated with pronouncing a short sentence. Advantages and limitation of the proposed technique are highlighted, while suggesting extensions to other multimedia signals, along with their required additional computational effort.

Zaher, Ashraf A., Amjad Hussain, G..  2019.  Chaos-based Cryptography for Transmitting Multimedia Data over Public Channels. 2019 7th International Conference on Information and Communication Technology (ICoICT). :1–6.

This paper explores using chaos-based cryptography for transmitting multimedia data, mainly speech and voice messages, over public communication channels, such as the internet. The secret message to be transmitted is first converted into a one-dimensional time series, that can be cast in a digital/binary format. The main feature of the proposed technique is mapping the two levels of every corresponding bit of the time series into different multiple chaotic orbits, using a simple encryption function. This one-to-many mapping robustifies the encryption technique and makes it resilient to crypto-analysis methods that rely on associating the energy level of the signal into two binary levels, using return map attacks. A chaotic nonautonomous Duffing oscillator is chosen to implement the suggested technique, using three different parameters that are assumed unknown at the receiver side. Synchronization between the transmitter and the receiver and reconstructing the secret message, at the receiver side, is done using a Lyapunov-based adaptive technique. Achieving stable operation, tuning the required control gains, as well as effective utilization of the bandwidth of the public communication channel are investigated. Two different case studies are presented; the first one deals with text that can be expressed as 8-bit ASCII code, while the second one corresponds to an analog acoustic signal that corresponds to the voice associated with pronouncing a short sentence. Advantages and limitation of the proposed technique are highlighted, while suggesting extensions to other multimedia signals, along with their required additional computational effort.

Zahid, A., Masood, R., Shibli, M.A..  2014.  Security of sharded NoSQL databases: A comparative analysis. Information Assurance and Cyber Security (CIACS), 2014 Conference on. :1-8.

NoSQL databases are easy to scale-out because of their flexible schema and support for BASE (Basically Available, Soft State and Eventually Consistent) properties. The process of scaling-out in most of these databases is supported by sharding which is considered as the key feature in providing faster reads and writes to the database. However, securing the data sharded over various servers is a challenging problem because of the data being distributedly processed and transmitted over the unsecured network. Though, extensive research has been performed on NoSQL sharding mechanisms but no specific criterion has been defined to analyze the security of sharded architecture. This paper proposes an assessment criterion comprising various security features for the analysis of sharded NoSQL databases. It presents a detailed view of the security features offered by NoSQL databases and analyzes them with respect to proposed assessment criteria. The presented analysis helps various organizations in the selection of appropriate and reliable database in accordance with their preferences and security requirements.

Zahid, Ali Z.Ghazi, Mohammed Salih Al-Kharsan, Ibrahim Hasan, Bakarman, Hesham A., Ghazi, Muntadher Faisal, Salman, Hanan Abbas, Hasoon, Feras N.  2019.  Biometric Authentication Security System Using Human DNA. 2019 First International Conference of Intelligent Computing and Engineering (ICOICE). :1—7.
The fast advancement in the last two decades proposed a new challenge in security. In addition, the methods used to secure information are drawing more attention and under intense investigation by researchers around the globe. However, securing data is a very hard task, due to the escalation of threat levels. Several technologies and techniques developed and used to secure data throughout communication or by direct access to the information as an example encryption techniques and authentication techniques. A most recent development methods used to enhance security is by using human biometric characteristics such as thumb, hand, eye, cornea, and DNA; to enforce the security of a system toward higher level, human DNA is a promising field and human biometric characteristics can enhance the security of any system using biometric features for authentication. Furthermore, the proposed methods does not fulfil or present the ultimate solution toward tightening the system security. However, one of the proposed solutions enroll a technique to encrypt the biometric characteristic using a well-known cryptosystem technique. In this paper, an overview presented on the benefits of incorporating a human DNA based security systems and the overall effect on how such systems enhance the security of a system. In addition, an algorithm is proposed for practical application and the implementation discussed briefly.
Zahid, Muhammad Noaman, Jiang, Jianliang, Lu, Heng, Rizvi, Saad, Eric, Deborah, Khan, Shahrukh, Zhang, Hengli.  2020.  Security Issues and Challenges in RFID, Wireless Sensor Network and Optical Communication Networks and Solutions. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). :592–599.
Nowadays, Security is the biggest challenge in communication networks. Well defined security protocols not only solve the privacy and security issues but also help to reduce the implementation cost and simplify network's operation. Network society demands more reliable and secure network services as well as infrastructure. In communication networks, data theft, hacking, fraud, cyber warfare are serious security threats. Security as defined by experts is confirming protected communication amongst communication/computing systems and consumer applications in private and public networks, it is important for promising privacy, confidentiality, and protection of information. This paper highlights the security related issues and challenges in communication networks. We also present the holistic view for the underlaying physical layer including physical infrastructure attacks, jamming, interception, and eavesdropping. This research focused on improving the security measures and protocols in different communication networks.
Zahilah, R., Tahir, F., Zainal, A., Abdullah, A. H., Ismail, A. S..  2017.  Unified Approach for Operating System Comparisons with Windows OS Case Study. 2017 IEEE Conference on Application, Information and Network Security (AINS). :91–96.

The advancement in technology has changed how people work and what software and hardware people use. From conventional personal computer to GPU, hardware technology and capability have dramatically improved so does the operating systems that come along. Unfortunately, current industry practice to compare OS is performed with single perspective. It is either benchmark the hardware level performance or performs penetration testing to check the security features of an OS. This rigid method of benchmarking does not really reflect the true performance of an OS as the performance analysis is not comprehensive and conclusive. To illustrate this deficiency, the study performed hardware level and operational level benchmarking on Windows XP, Windows 7 and Windows 8 and the results indicate that there are instances where Windows XP excels over its newer counterparts. Overall, the research shows Windows 8 is a superior OS in comparison to its predecessors running on the same hardware. Furthermore, the findings also show that the automated benchmarking tools are proved less efficient benchmark systems that run on Windows XP and older OS as they do not support DirectX 11 and other advanced features that the hardware supports. There lies the need to have a unified benchmarking approach to compare other aspects of OS such as user oriented tasks and security parameters to provide a complete comparison. Therefore, this paper is proposing a unified approach for Operating System (OS) comparisons with the help of a Windows OS case study. This unified approach includes comparison of OS from three aspects which are; hardware level, operational level performance and security tests.

Zahiri-Rad, Saman, Salem, Ziad, Weiss, Andreas P., Leitgeb, Erich.  2022.  An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication. 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). :1–8.
Wrist-worn devices enable access to essential information and they are suitable for a wide range of applications, such as gesture and activity recognition. Wrist-worn devices require appropriate technologies when used in sensitive areas, overcoming vulnerabilities in regard to security and privacy. In this work, we propose an approach to recognize wrist rotation by utilizing Visible Light Communication (VLC) that is enabled by low-cost LEDs in an indoor environment. In this regard, we address the channel model of a VLC communicating wristband (VLCcw) in terms of the following factors. The directionality and the spectral composition of the light and the corresponding spectral sensitivity and the directional characteristics of the utilized photodiode (PD). We verify our VLCcw from the simulation environment by a small-scale experimental setup. Then, we analyze the system when white and RGBW LEDs are used. In addition, we optimized the VLCcw system by adding more receivers for the purpose of reducing the number of LEDs on VLCcw. Our results show that the proposed approach generates a feasible real-world simulation environment.
Zahra, A., Shah, M. A..  2017.  IoT based ransomware growth rate evaluation and detection using command and control blacklisting. 2017 23rd International Conference on Automation and Computing (ICAC). :1–6.

Internet of things (IoT) is internetworking of various physical devices to provide a range of services and applications. IoT is a rapidly growing field, on an account of this; the security measurements for IoT should be at first concern. In the modern day world, the most emerging cyber-attack threat for IoT is ransomware attack. Ransomware is a kind of malware with the aim of rendering a victim's computer unusable or inaccessible, and then asking the user to pay a ransom to revert the destruction. In this paper we are evaluating ransomware attacks statistics for the past 2 years and the present year to estimate growth rate of the most emerging ransomware families from the last 3 years to evaluate most threatening ransomware attacks for IoT. Growth rate results shows that the number of attacks for Cryptowall and locky ransomware are notably increasing therefore, these ransomware families are potential threat to IoT. Moreover, we present a Cryptowall ransomware attack detection model based on the communication and behavioral study of Cryptowall for IoT environment. The proposed model observes incoming TCP/IP traffic through web proxy server then extracts TCP/IP header and uses command and control (C&C) server black listing to detect ransomware attacks.

Zahra, Ayima, Asif, Muhammad, Nagra, Arfan Ali, Azeem, Muhammad, Gilani, Syed A..  2021.  Vulnerabilities and Security Threats for IoT in Transportation and Fleet Management. 2021 4th International Conference on Computing Information Sciences (ICCIS). :1–5.
The fields of transportation and fleet management have been evolving at a rapid pace and most of these changes are due to numerous incremental developments in the area. However, a comprehensive study that critically compares and contrasts all the existing techniques and methodologies in the area is still missing. This paper presents a comparative analysis of the vulnerabilities and security threats for IoT and their mitigation strategies in the context of transportation and fleet management. Moreover, we attempt to classify the existing strategies based on their underlying principles.
Zaidan, Firas, Hannebauer, Christoph, Gruhn, Volker.  2016.  Quality Attestation: An Open Source Pattern. Proceedings of the 21st European Conference on Pattern Languages of Programs. :2:1–2:7.

A number of small Open Source projects let independent providers measure different aspects of their quality that would otherwise be hard to see. This paper describes this observation as the pattern Quality Attestation. Quality Attestation belongs to a family of Open Source patterns written by various authors.

Zainuddin, Muhammad Agus, Dedu, Eugen, Bourgeois, Julien.  2016.  SBN: Simple Block Nanocode for Nanocommunications. Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication. :4:1–4:7.

Nanonetworks consist of nanomachines that perform simple tasks (sensing, data processing and communication) at molecular scale. Nanonetworks promise novel solutions in various fields, such as biomedical, industrial and military. Reliable nanocommunications require error control. ARQ and complex Forward Error Correction (FEC) are not appropriate in nano-devices due to the peculiarities of Terahertz band, limited computation complexity and energy capacity. In this paper we propose Simple Block Nanocode (SBN) to provide reliable data transmission in electromagnetic nanocommunications. We compare it with the two reliable transmission codes in nanonetworks in the literature, minimum energy channel (MEC) and Low Weight Channel (LWC) codes. The results show that SBN outperforms MEC and LWC in terms of reliability and image quality at receiver. The results also show that a nano-device (with nano-camera) with harvesting module has enough energy to support perpetual image transmission.