Biblio
In the past decades, learning an effective distance metric between pairs of instances has played an important role in the classification and retrieval task, for example, the person identification or malware retrieval in the IoT service. The core motivation of recent efforts focus on improving the metric forms, and already showed promising results on the various applications. However, such models often fail to produce a reliable metric on the ambiguous test set. It happens mainly due to the sampling process of the training set, which is not representative of the distribution of the negative samples, especially the examples that are closer to the boundary of different categories (also called hard negative samples). In this paper, we focus on addressing such problems and propose an adaptive margin deep adversarial metric learning (AMDAML) framework. It exploits numerous common negative samples to generate potential hard (adversarial) negatives and applies them to facilitate robust metric learning. Apart from the previous approaches that typically depend on the search or data augmentation to find hard negative samples, the generation of adversarial negative instances could avoid the limitation of domain knowledge and constraint pairs' amount. Specifically, in order to prevent over fitting or underfitting during the training step, we propose an adaptive margin loss that preserves a flexible margin between the negative (include the adversarial and original) and positive samples. We simultaneously train both the adversarial negative generator and conventional metric objective in an adversarial manner and learn the feature representations that are more precise and robust. The experimental results on practical data sets clearly demonstrate the superiority of AMDAML to representative state-of-the-art metric learning models.
HDFS has been widely used for storing massive scale data which is vulnerable to site disaster. The file system backup is an important strategy for data retention. In this paper, we present an efficient, easy- to-use Backup and Disaster Recovery System for HDFS. The system includes a client based on HDFS with additional feature of remote backup, and a remote server with a HDFS cluster to keep the backup data. It supports full backup and regularly incremental backup to the server with very low cost and high throughout. In our experiment, the average speed of backup and recovery is up to 95 MB/s, approaching the theoretical maximum speed of gigabit Ethernet.
With the implementation of W ⊕ X security model on computer system, Return-Oriented Programming(ROP) has become the primary exploitation technique for adversaries. Although many solutions that defend against ROP exploits have been proposed, they still suffer from various shortcomings. In this paper, we propose a new way to mitigate ROP attacks that are based on return instructions. We clean the scratch registers which are also the parameter registers based on the features of ROP malicious code and calling convention. A prototype is implemented on x64-based Linux platform based on Pin. Preliminary experimental results show that our method can efficiently mitigate conventional ROP attacks.
Recently, the armed forces want to bring the Internet of Things technology to improve the effectiveness of military operations in battlefield. So the Internet of Battlefield Things (IoBT) has entered our view. And due to the high processing latency and low reliability of the “combat cloud” network for IoBT in the battlefield environment, in this paper , a novel “combat cloud-fog” network architecture for IoBT is proposed. The novel architecture adds a fog computing layer which consists of edge network equipment close to the users in the “combat-cloud” network to reduce latency and enhance reliability. Meanwhile, since the computing capability of the fog equipment are weak, it is necessary to implement distributed computing in the “combat cloud-fog” architecture. Therefore, the distributed computing load balancing problem of the fog computing layer is researched. Moreover, a distributed generalized diffusion strategy is proposed to decrease latency and enhance the stability and survivability of the “combat cloud-fog” network system. The simulation result indicates that the load balancing strategy based on generalized diffusion algorithm could decrease the task response latency and support the efficient processing of battlefield information effectively, which is suitable for the “combat cloud- fog” network architecture.
Industrial control systems are the fundamental infrastructures of a country. Since the intrusion attack methods for industrial control systems have become complex and concealed, the traditional protection methods, such as vulnerability database, virus database and rule matching cannot cope with the attacks hidden inside the terminals of industrial control systems. In this work, we propose a control flow anomaly detection algorithm based on the control flow of the business programs. First, a basic group partition method based on key paths is proposed to reduce the performance burden caused by tabbed-assert control flow analysis method through expanding basic research units. Second, the algorithm phases of standard path set acquisition and path matching are introduced. By judging whether the current control flow path is deviating from the standard set or not, the abnormal operating conditions of industrial control can be detected. Finally, the effectiveness of a control flow anomaly detection (checking) algorithm based on Path Matching (CFCPM) is demonstrated by anomaly detection ability analysis and experiments.
With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.
The traditional text classification methods usually follow this process: first, a sentence can be considered as a bag of words (BOW), then transformed into sentence feature vector which can be classified by some methods, such as maximum entropy (ME), Naive Bayes (NB), support vector machines (SVM), and so on. However, when these methods are applied to text classification, we usually can not obtain an ideal result. The most important reason is that the semantic relations between words is very important for text categorization, however, the traditional method can not capture it. Sentiment classification, as a special case of text classification, is binary classification (positive or negative). Inspired by the sentiment analysis, we use a novel deep learning-based recurrent neural networks (RNNs)model for automatic security audit of short messages from prisons, which can classify short messages(secure and non-insecure). In this paper, the feature of short messages is extracted by word2vec which captures word order information, and each sentence is mapped to a feature vector. In particular, words with similar meaning are mapped to a similar position in the vector space, and then classified by RNNs. RNNs are now widely used and the network structure of RNNs determines that it can easily process the sequence data. We preprocess short messages, extract typical features from existing security and non-security short messages via word2vec, and classify short messages through RNNs which accept a fixed-sized vector as input and produce a fixed-sized vector as output. The experimental results show that the RNNs model achieves an average 92.7% accuracy which is higher than SVM.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.
Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.
Deep neural networks (DNNs) are effective machine learning models to solve a large class of recognition problems, including the classification of nonlinearly separable patterns. The applications of DNNs are, however, limited by the large size and high energy consumption of the networks. Recently, stochastic computation (SC) has been considered to implement DNNs to reduce the hardware cost. However, it requires a large number of random number generators (RNGs) that lower the energy efficiency of the network. To overcome these limitations, we propose the design of an energy-efficient deep belief network (DBN) based on stochastic computation. An approximate SC activation unit (A-SCAU) is designed to implement different types of activation functions in the neurons. The A-SCAU is immune to signal correlations, so the RNGs can be shared among all neurons in the same layer with no accuracy loss. The area and energy of the proposed design are 5.27% and 3.31% (or 26.55% and 29.89%) of a 32-bit floating-point (or an 8-bit fixed-point) implementation. It is shown that the proposed SC-DBN design achieves a higher classification accuracy compared to the fixed-point implementation. The accuracy is only lower by 0.12% than the floating-point design at a similar computation speed, but with a significantly lower energy consumption.
To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.
A high definition(HD) wide dynamic video surveillance system is designed and implemented based on Field Programmable Gate Array(FPGA). This system is composed of three subsystems, which are video capture, video wide dynamic processing and video display subsystem. The images in the video are captured directly through the camera that is configured in a pattern have long exposure in odd frames and short exposure in even frames. The video data stream is buffered in DDR2 SDRAM to obtain two adjacent frames. Later, the image data fusion is completed by fusing the long exposure image with the short exposure image (pixel by pixel). The video image display subsystem can display the image through a HDMI interface. The system is designed on the platform of Lattice ECP3-70EA FPGA, and camera is the Panasonic MN34229 sensor. The experimental result shows that this system can expand dynamic range of the HD video with 30 frames per second and a resolution equal to 1920*1080 pixels by real-time wide dynamic range (WDR) video processing, and has a high practical value.
The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.
Third-party IME (Input Method Editor) apps are often the preference means of interaction for Android users' input. In this paper, we first discuss the insecurity of IME apps, including the Potentially Harmful Apps (PHA) and malicious IME apps, which may leak users' sensitive keystrokes. The current defense system, such as I-BOX, is vulnerable to the prefix-substitution attack and the colluding attack due to the post-IME nature. We provide a deeper understanding that all the designs with the post-IME nature are subject to the prefix-substitution and colluding attacks. To remedy the above post-IME system's flaws, we propose a new idea, pre-IME, which guarantees that "Is this touch event a sensitive keystroke?" analysis will always access user touch events prior to the execution of any IME app code. We designed an innovative TrustZone-based framework named IM-Visor which has the pre-IME nature. Specifically, IM-Visor creates the isolation environment named STIE as soon as a user intends to type on a soft keyboard, then the STIE intercepts, translates and analyzes the user's touch input. If the input is sensitive, the translation of keystrokes will be delivered to user apps through a trusted path. Otherwise, IM-Visor replays non-sensitive keystroke touch events for IME apps or replays non-keystroke touch events for other apps. A prototype of IM-Visor has been implemented and tested with several most popular IMEs. The experimental results show that IM-Visor has small runtime overheads.
The development of mobile internet has brought convenience to people, but the openness and diversity of mobile Internet make it face the security threat of communication privacy data disclosure. In this paper, a trusted android device security communication method based on TrustZone is proposed. Firstly, Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm is used to make both parties negotiate the session key in the Trusted Execution Environment (TEE), and then, we stored the key safely in the TEE. Finally, TEE completes the encryption and decryption of the transmitted data. This paper constructs a secure communication between mobile devices without a trusted third party and analyzes the feasibility of the method from time efficiency and security. The experimental results show that the method can resist malicious application monitoring in the process of data encryption and ensures the security of the session key. Compared with the traditional scheme, it is found that the performance of the scheme is not significantly reduced.
Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.