Visible to the public Biblio

Filters: Keyword is hash algorithm  [Clear All Filters]
2021-08-31
Salimboyevich, Olimov Iskandar, Absamat ugli, Boriyev Yusuf, Akmuratovich, Sadikov Mahmudjon.  2020.  Making algorithm of improved key generation model and software. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—3.
In this paper is devoted methods for generating keys for cryptographic algorithms. Hash algorithms were analysed and learned linear and nonlinear. It was made up improved key generation algorithm and software.
2020-06-12
Deng, Juan, Zhou, Bing, Shi, YiLiang.  2018.  Application of Improved Image Hash Algorithm in Image Tamper Detection. 2018 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :629—632.

In order to study the application of improved image hashing algorithm in image tampering detection, based on compressed sensing and ring segmentation, a new image hashing technique is studied. The image hash algorithm based on compressed sensing and ring segmentation is proposed. First, the algorithm preprocesses the input image. Then, the ring segment is used to extract the set of pixels in each ring region. These aggregate data are separately performed compressed sensing measurements. Finally, the hash value is constructed by calculating the inner product of the measurement vector and the random vector. The results show that the algorithm has good perceived robustness, uniqueness and security. Finally, the ROC curve is used to analyze the classification performance. The comparison of ROC curves shows that the performance of the proposed algorithm is better than FM-CS, GF-LVQ and RT-DCT.

Al Kobaisi, Ali, Wocjan, Pawel.  2018.  Supervised Max Hashing for Similarity Image Retrieval. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). :359—365.

The storage efficiency of hash codes and their application in the fast approximate nearest neighbor search, along with the explosion in the size of available labeled image datasets caused an intensive interest in developing learning based hash algorithms recently. In this paper, we present a learning based hash algorithm that utilize ordinal information of feature vectors. We have proposed a novel mathematically differentiable approximation of argmax function for this hash algorithm. It has enabled seamless integration of hash function with deep neural network architecture which can exploit the rich feature vectors generated by convolutional neural networks. We have also proposed a loss function for the case that the hash code is not binary and its entries are digits of arbitrary k-ary base. The resultant model comprised of feature vector generation and hashing layer is amenable to end-to-end training using gradient descent methods. In contrast to the majority of current hashing algorithms that are either not learning based or use hand-crafted feature vectors as input, simultaneous training of the components of our system results in better optimization. Extensive evaluations on NUS-WIDE, CIFAR-10 and MIRFlickr benchmarks show that the proposed algorithm outperforms state-of-art and classical data agnostic, unsupervised and supervised hashing methods by 2.6% to 19.8% mean average precision under various settings.

2020-02-10
Velmurugan, K.Jayasakthi, Hemavathi, S..  2019.  Video Steganography by Neural Networks Using Hash Function. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:55–58.

Video Steganography is an extension of image steganography where any kind of file in any extension is hidden into a digital video. The video content is dynamic in nature and this makes the detection of hidden data difficult than other steganographic techniques. The main motive of using video steganography is that the videos can store large amount of data in it. This paper focuses on security using the combination of hybrid neural networks and hash function for determining the best bits in the cover video to embed the secret data. For the embedding process, the cover video and the data to be hidden is uploaded. Then the hash algorithm and neural networks are applied to form the stego video. For the extraction process, the reverse process is applied and the secret data is obtained. All experiments are done using MatLab2016a software.

2020-01-20
Thapliyal, Sourav, Gupta, Himanshu, Khatri, Sunil Kumar.  2019.  An Innovative Model for the Enhancement of IoT Device Using Lightweight Cryptography. 2019 Amity International Conference on Artificial Intelligence (AICAI). :887–892.

The problem statement is that at present there is no stable algorithm which provides security for resource constrained devices because classic cryptography algorithms are too heavy to be implemented. So we will provide a model about the various cryptographic algorithms in this field which can be modified to be implement on constrained devices. The advantages and disadvantages of IOT devices will be taken into consideration to develop a model. Mainly IOT devices works on three layers which are physical layer, application and commutation layer. We have discuss how IOT devices individually works on these layers and how security is compromised. So, we can build a model where minimum intervention of third party is involved i.e. hackers and we can have higher and tight privacy and security system [1].we will discuss about the different ciphers(block and stream) and functions(hash algorithms) through which we can achieve cryptographic algorithms which can be implemented on resource constrained devices. Cost, safety and productivity are the three parameters which determines the ratio for block cipher. Mostly programmers are forced to choose between these two; either cost and safety, safety and productivity, cost and productivity. The main challenge is to optimize or balance between these three factors which is extremely a difficult task to perform. In this paper we will try to build a model which will optimize these three factors and will enhance the security of IOT devices.

2019-03-25
Li, Y., Guan, Z., Xu, C..  2018.  Digital Image Self Restoration Based on Information Hiding. 2018 37th Chinese Control Conference (CCC). :4368–4372.
With the rapid development of computer networks, multimedia information is widely used, and the security of digital media has drawn much attention. The revised photo as a forensic evidence will distort the truth of the case badly tampered pictures on the social network can have a negative impact on the parties as well. In order to ensure the authenticity and integrity of digital media, self-recovery of digital images based on information hiding is studied in this paper. Jarvis half-tone change is used to compress the digital image and obtain the backup data, and then spread the backup data to generate the reference data. Hash algorithm aims at generating hash data by calling reference data and original data. Reference data and hash data together as a digital watermark scattered embedded in the digital image of the low-effective bits. When the image is maliciously tampered with, the hash bit is used to detect and locate the tampered area, and the image self-recovery is performed by extracting the reference data hidden in the whole image. In this paper, a thorough rebuild quality assessment of self-healing images is performed and better performance than the traditional DCT(Discrete Cosine Transform)quantization truncation approach is achieved. Regardless of the quality of the tampered content, a reference authentication system designed according to the principles presented in this paper allows higher-quality reconstruction to recover the original image with good quality even when the large area of the image is tampered.
2015-05-06
Yakut, S., Ozer, A.B..  2014.  HMAC based one t #x0131;me password generator. Signal Processing and Communications Applications Conference (SIU), 2014 22nd. :1563-1566.

One Time Password which is fixed length strings to perform authentication in electronic media is used as a one-time. In this paper, One Time Password production methods which based on hash functions were investigated. Keccak digest algorithm was used for the production of One Time Password. This algorithm has been selected as the latest standards for hash algorithm in October 2012 by National Instute of Standards and Technology. This algorithm is preferred because it is faster and safer than the others. One Time Password production methods based on hash functions is called Hashing-Based Message Authentication Code structure. In these structures, the key value is using with the hash function to generate the Hashing-Based Message Authentication Code value. Produced One Time Password value is based on the This value. In this application, the length of the value One Time Password was the eight characters to be useful in practice.