Biblio
The problem of fast items retrieval from a fixed collection is often encountered in most computer science areas, from operating system components to databases and user interfaces. We present an approach based on hash tables that focuses on both minimizing the number of comparisons performed during the search and minimizing the total collection size. The standard open-addressing double-hashing approach is improved with a non-linear transformation that can be parametrized in order to ensure a uniform distribution of the data in the hash table. The optimal parameter is determined using a genetic algorithm. The paper results show that near-perfect hashing is faster than binary search, yet uses less memory than perfect hashing, being a good choice for memory-constrained applications where search time is also critical.
Querying over encrypted data is gaining increasing popularity in cloud-based data hosting services. Security and efficiency are recognized as two important and yet conflicting requirements for querying over encrypted data. In this article, we propose an efficient private keyword search (EPKS) scheme that supports binary search and extend it to dynamic settings (called DEPKS) for inverted index–based encrypted data. First, we describe our approaches of constructing a searchable symmetric encryption (SSE) scheme that supports binary search. Second, we present a novel framework for EPKS and provide its formal security definitions in terms of plaintext privacy and predicate privacy by modifying Shen et al.’s security notions [Shen et al. 2009]. Third, built on the proposed framework, we design an EPKS scheme whose complexity is logarithmic in the number of keywords. The scheme is based on the groups of prime order and enjoys strong notions of security, namely statistical plaintext privacy and statistical predicate privacy. Fourth, we extend the EPKS scheme to support dynamic keyword and document updates. The extended scheme not only maintains the properties of logarithmic-time search efficiency and plaintext privacy and predicate privacy but also has fewer rounds of communications for updates compared to existing dynamic search encryption schemes. We experimentally evaluate the proposed EPKS and DEPKS schemes and show that they are significantly more efficient in terms of both keyword search complexity and communication complexity than existing randomized SSE schemes.
High-speed IP address lookup is essential to achieve wire-speed packet forwarding in Internet routers. Ternary content addressable memory (TCAM) technology has been adopted to solve the IP address lookup problem because of its ability to perform fast parallel matching. However, the applicability of TCAMs presents difficulties due to cost and power dissipation issues. Various algorithms and hardware architectures have been proposed to perform the IP address lookup using ordinary memories such as SRAMs or DRAMs without using TCAMs. Among the algorithms, we focus on two efficient algorithms providing high-speed IP address lookup: parallel multiple-hashing (PMH) algorithm and binary search on level algorithm. This paper shows how effectively an on-chip Bloom filter can improve those algorithms. A performance evaluation using actual backbone routing data with 15,000-220,000 prefixes shows that by adding a Bloom filter, the complicated hardware for parallel access is removed without search performance penalty in parallel-multiple hashing algorithm. Search speed has been improved by 30-40 percent by adding a Bloom filter in binary search on level algorithm.